CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Exploration Geophysics   
Exploration Geophysics
http://www.aseg.org.au
  The Journal of the Australian Society of Exploration Geophysicists
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Committee
Contacts
For Advertisers
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with CP
blank image
facebook twitter youtube

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

red arrow Preview
blank image
Preview, the Magazine of the Australian Society of Exploration Geophysicists, is also available online.

red arrow ASEG Extended Abstracts
blank image
ASEG Extended Abstracts, drawn from the ASEG´s conferencces, is also available online.

 

Article << Previous     |         Contents Vol 41(2)

Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (Marina Di Capilungo, Lecce, Italy)

Giovanni Leucci 1 3, Lara De Giorgi 2

1 Institute for Archaeological and Monumental Heritage (CNR-IBAM), via per Monteroni, 73100 Lecce, Italy.
2 Department of Science of Materials, University of Salento, via per Monteroni, 73100 Lecce, Italy.
3 Corresponding author. Emails: g.leucci@ibam.cnr.it; gianni.leucci@unisalento.it
 
PDF (1.6 MB) $25
 Export Citation
 Print
  


Abstract

The coastal area Marina di Capilungo located ~50 km south-west of Lecce (Italy) is one of the sites at greatest geological risk in the Salento peninsula. In the past few decades, Marina di Capilungo has been affected by a series of subsidence events, which have led in some cases to the partial collapse of buildings and road surfaces. These events had both social repercussions, causing alarm and emergency situations, and economic ones in terms of the funds for restoration.

With the aim of mapping the subsurface karstic features, and so to assess the dimensions of the phenomena in order to prevent and/or limit the ground subsidence events, integrated geophysical surveys were undertaken in an area of ~70 000 m2 at Marina di Capilungo. Large volume voids such as karstic cavities are excellent targets for microgravity surveys. The absent mass of the void creates a quantifiable disturbance in the earth’s gravitational field, with the magnitude of the disturbance directly proportional to the volume of the void. Smaller shallow voids can be detected using ground-penetrating radar (GPR). Microgravimetric and GPR geophysical methods were therefore used. An accurate interpretation was obtained using small station spacing and accurate geophysical data processing. The interpretation was facilitated by combining the modelling of the data with the geological and topographic information for explored caves. The GPR method can complement the microgravimetric technique in determining cavity depths and in verifying the presence of off-line features and numerous areas of small cavities, which may be difficult to be resolved with only microgravimetric data. However, the microgravimetric can complement GPR in delineating with accuracy the shallow cavities in a wide area where GPR measurements are difficult. Furthermore, microgravity surveys in an urban environment require effective and accurate consideration of the effects given by infrastructures, such as buildings, as well as those given by topography, near a gravity station. The acquired negative anomaly in the residual Bouguer anomalies field suggested the presence of possible void features. GPR and modelling data were used to estimate the depth and shape of the anomalous source.

Keywords: ground-penetrating radar, Karstic features map, microgravimetric.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014