CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 5(2)

High-resolution two-dimensional quantitative analysis of phosphorus, vanadium and arsenic, and qualitative analysis of sulfide, in a freshwater sediment

Anthony Stockdale A, William Davison A B, Hao Zhang A

A Department of Environmental Science, Lancaster Environment Centre (LEC), Lancaster University, Lancaster, LA1 4YQ, UK.
B Corresponding author. Fax: +44 (0) 1524 593985. Email: w.davison@lancaster.ac.uk
 
 Full Text
 PDF (720 KB)
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Chemical characterisation of sediment microniches can reveal diagenetic processes that may not be detected by larger-scale analysis. With the development of a new preparation method for a binding phase gel, the technique of diffusive gradients in thin films has been used to demonstrate links between the diagenesis of sulfide, phosphorus, vanadium and arsenic at microniches. Knowledge of these processes may improve predictions of past deposition climates where trace elements are considered as paleoredox proxies.

Abstract. Recently introduced techniques that can provide two-dimensional images of solution concentrations in sediments for multiple analytes have revealed discrete sites of geochemical behaviour different from the average for that depth (microniches). We have developed a new preparation method for a binding phase, incorporated in a hydrogel, for the diffusive gradients in thin films (DGT) technique. It allows co-analysis of sulfide and the reactive forms of phosphorus, vanadium and arsenic in the porewaters at the surface of the device. This gel, when dried and analysed using laser ablation mass spectrometry, allows the acquisition of high-resolution sub-millimetre-scale data. The binding phase was deployed within a DGT device in a sediment core collected from a productive lake, Esthwaite Water (UK). Localised removal of phosphate and vanadium from the porewaters has been demonstrated at a microniche of local sulfide production. The possible removal processes, including bacterial uptake and reduction of vanadate to insoluble VIII by sulfide, are discussed. Understanding processes occurring at this scale may allow improved prediction of pollutant fate and better prediction of past climates where trace metals are used as paleoredox proxies.

Keywords: DGT, early diagenesis, laser ablation, microniche, phosphate.


   
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014