CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 7(2)

Validation of a portable flow injection–chemiluminescence (FI-CL) method for the determination of dissolved iron in Atlantic open ocean and shelf waters by comparison with isotope dilution–inductively coupled plasma mass spectrometry (ID-ICPMS)

Simon J. Ussher A C, Ivan Petrov B, Christophe R. Quétel B, Paul J. Worsfold A

A School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK.
B Institute for Reference Materials and Measurements, Joint Research Centre–European Commission, 111 Retieseweg, B-2440 Geel, Belgium.
C Corresponding author. Present address: Bermuda Institute of Ocean Sciences, 17 Biological Station, Ferry Reach, St. George’s, GE 01, Bermuda. Email: simon.ussher@bios.edu
 
PDF (220 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. The importance of iron as a limiting micronutrient for primary production in the marine environment and its complex marine biogeochemical cycle necessitate accurate methods for the determination of iron in seawater. Current analytical challenges include the detection of trace concentrations (sub-nanomolar) and the high potential for contamination and matrix interferences. To improve confidence in dissolved iron data, intercomparison exercises of commonly used analytical methods are required that demonstrate their applicability to different water masses.

Abstract. A blind intercomparison exercise was carried out to validate a well documented, portable flow injection–chemiluminescence (FI-CL) method for the determination of iron in seawater. This was done by the analysis of a variety of filtered Atlantic Ocean samples using FI-CL and a potential primary method of measurement, isotope dilution–inductively coupled plasma mass spectrometry (ID-ICPMS). To investigate the effect of the seawater matrix at various concentrations of iron, samples were collected at various depths (0–200 m) from different water masses (European Continental Shelf, the South Atlantic Ocean) and filtered through both 0.02- and 0.2-μm pore size filters. The exercise was conducted under controlled conditions using the same bottles transported between laboratories to avoid between-bottle inhomogeneity. The results generally showed good agreement between the two methods for dissolved iron over the concentration range 0.15 to 2.1 nM. However, some samples were not in agreement according to estimated uncertainties and this was attributed to random errors arising from contamination during sample handling and matrix effects (i.e. variable interferences) rather than systematic errors.

Keywords: Atlantic seawater, biogeochemistry, intercomparison exercise.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014