CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
Upcoming Research Front
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 7(2)

Aeolian iron mobilisation by dust–acid interactions and their implications for soluble iron deposition to the ocean: a test involving potential anthropogenic organic acidic species

Chao Luo A B C, Yuan Gao A D

A Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ 07102, USA.
B Department of Earth and Atmospheric sciences, Cornell University, Ithaca, NY 14853, USA.
C Present address: School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
D Corresponding author. Email: yuangaoh@andromeda.rutgers.edu
PDF (671 KB) $25
 Export Citation

Environmental context. Studying the input of atmospheric soluble iron to the ocean is important as the soluble form of iron is bioavailable for phytoplankton uptake in the surface ocean to support photosynthesis. In this paper, the effect of organic acidic species on atmospheric iron dissolution is addressed through a global model for the first time. The new results contribute to a better understanding of iron dissolution processes in the atmosphere and the role of atmospheric iron in ocean biogeochemical cycles.

Abstract. Dust deposition is a major source of iron in certain oceanic regions. Many atmospheric processes, such as heterogeneous reactions with acidic species, may convert insoluble iron in dust to soluble forms that become bioavailable for phytoplankton uptake in the surface ocean. Here we report for the first time the effects of organic acidic species on iron dissolution using laboratory-measured conversion rates by oxalate, simulated in a global model to estimate soluble iron fluxes to the ocean. With the complexity and limited data from measurements relating to different sources for oxalate, we focus on the effect of oxalate of anthropogenic origin in this work as a first-step testing, and we apply a scaling factor for oxalate based on its relationship with aerosol sulfate observed by in situ measurements in the continental sites. The results show better correlation with the observations than the work including inorganic acids alone, suggesting the contribution of organic acids to Fe dissolution. However, the simulated iron solubility is lower than that derived from measurements, suggesting additional processes may contribute to Fe dissolution that should be included in the model. Total deposition of soluble iron to the global ocean including the effect by anthropogenic oxalate is ~0.34 Tg year–1.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016