CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 8(1)

Snow – a photobiochemical exchange platform for volatile and semi-volatile organic compounds with the atmosphere

P. A. Ariya A B H , F. Domine C , G. Kos B , M. Amyot D , V. Côté B , H. Vali E , T. Lauzier C , W. F. Kuhs F , K. Techmer F , T. Heinrichs G and R. Mortazavi A

A McGill University, Department of Chemistry, 801 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada.
B McGill University, Department of Atmospheric & Oceanic Sciences, 805 Sherbrooke Street West, Montreal, QC, H3A 2K6, Canada.
C Centre national de la recherche scientifique (CNRS), Laboratoire de Glaciologie et Géophysique de l’Environnement, B.P. 96, 54 Rue Molière, F-38402 Saint-Martin d’Hères, Cedex, France.
D Département des sciences biologiques, Université de Montréal, 90, Vincent D’Indy, D-223, Montréal, QC, H2V 2S9, Canada.
E Departments of Anatomy & Earth and Planetary Sciences, McGill University, 3640 University Street, Montréal, QC, H3A 2B2, Canada.
F Geowissenschaftliches Zentrum der Universität Göttingen (GZG), Abteilung Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, D-37077 Göttingen, Germany.
G GZG, Abteilung Allgemeine und Angewandte Geologie, Universität Goettingen, Goldschmidtstrasse 3, D-37077 Göttingen, Germany.
H Corresponding author. Email: parisa.ariya@mcgill.ca

Environmental Chemistry 8(1) 62-73 http://dx.doi.org/10.1071/EN10056
Submitted: 26 May 2010  Accepted: 12 October 2010   Published: 28 February 2011


 
PDF (647 KB) $25
 Export Citation
 Print
  

Environmental context. Recent research has been directed towards the exchange of microorganisms and chemical compounds between snow and air. We investigate how microorganisms and chemical species in snow from the Arctic and temperate regions are transferred to the atmosphere and altered by the sun's energy. Results suggest that snow photo-biochemical reactions, in addition to physical-chemical reactions, should be considered in describing organic matter in air–snow exchanges, and in investigations of climate change.

Abstract. Field and laboratory studies of organic compounds in snow (12 species; concentrations ≤17 µg L–1) were conducted and microorganisms in snow and aerosols at urban and Arctic sites were investigated (snow: total bacteria count ≤40000 colony forming units per millilitre (CFU mL–1), fungi ≤400 CFU mL–1; air: bacteria ≤2.2 × 107 CFU m–3, fungi ≤84 CFU m–3). Bio-organic material is transferred between snow and air and influence on snow-air exchange processes is demonstrated. Volatile organic compounds in snow are released into the air upon melting. In vitro photochemistry indicated an increase of ≤60 µg L–1 for 1,3- and 1,4-dimethylbenzenes. Bacillus cereus was identified and observed in snow and air with ice-nucleating being P. syringae absent. As a result snow photobiochemical reactions should be considered in describing organic matter air–snow exchanges, and the investigation of climate change.



References

[1]  F. Domine, P. B. Shepson, Air–snow interactions and atmospheric chemistry. Science 2002, 297, 1506.
CrossRef | CAS | PubMed |

[2]  A. L. Sumner, P. B. Shepson, Snowpack production of formaldehyde and its effect on the arctic troposphere. Nature 1999, 398, 230..
CrossRef |

[3]  P. Ariya, A. Dastoor, M. Amyot, W. Schroeder, L. Barrie, K. Anlauf, F. Raofie, A. Ryzhkov, D. Davignon, J. Lalonde, A. Steffen, The arctic: a sink for mercury. Tellus B Chem. Phys. Meterol. 2004, 56, 397.
CrossRef |

[4]  H. Beine, F. Domine, A. Ianniello, M. Nardino, I. Allegrini, K. Teinila, R. Hillamo, Fluxes of nitrates between snow surfaces and the atmosphere in the European High Arctic. Atmos. Chem. Phys. 2003, 3, 335.
CrossRef | CAS |

[5]  M. Hutterli, R. Bales, J. McConnell, R. Stewart, HCHO in Antarctic snow: preservation in ice cores and air–snow exchange. Geophys. Res. Lett. 2002, 29, 1235.
CrossRef |

[6]  S. Preunkert, M. Legrand, D. Wagenbach, Sulfate trends in a Col du Dome (French Alps) ice core: a record of anthropogenic sulfate levels in the European midtroposphere over the twentieth century. J. Geophys. Res. – Atmos. 2001, 106, 31991.
CrossRef | CAS |

[7]  E. Saltzman, M. Aydin, W. De Bruyn, D. King, S. Yvon-Lewis, Methyl bromide in preindustrial air: measurements from an Antarctic ice core. J. Geophys. Res. – Atmos. 2004, 109, D05301.
CrossRef |

[8]  R. Honrath, S. Guo, M. Peterson, M. Dziobak, J. Dibb, M. Arsenault, Photochemical production of gas phase NOx from ice crystal NO3. J. Geophys. Res. – Atmos. 2000, 105, 24183.
CrossRef | CAS |

[9]  S. Perrier, P. Sassin, F. Domine, Diffusion and solubility of HCHO in ice: preliminary results. Can. J. Phys. 2003, 81, 319.
CrossRef | CAS |

[10]  A. Amoroso, F. Domine, G. Esposito, S. Morin, J. Savarino, M. Nardino, M. Montagnoli, J. Bonneville, J. Clement, A. Ianiello, H. Beine, Microorganisms in dry polar snow are involved in the exchanges of reactive nitrogen species with the atmosphere. Environ. Sci. Technol. 2010, 44, 714.
CrossRef | CAS | PubMed |

[11]  M. Felip, B. Sattler, R. Psenner, J. Catalan, Highly active microbial communities in the ice and snow cover of high-mountain lakes. Appl. Environ. Microbiol. 1995, 61, 2394..
| PubMed |

[12]  C. Morris, D. Georgakopoulos, D. Sands, Ice nucleation active bacteria and their potential role in precipitation. J. Phys. IV 2004, 121, 87.
CrossRef |

[13]  S. Rogers, W. Starmer, J. Castello, Recycling of pathogenic microbes through survival in ice. Med. Hypotheses 2004, 63, 773.
CrossRef | PubMed |

[14]  H. G. Jones, Snow Ecology: an Interdisciplinary Examination of Snow-covered Ecosystems 2001 (Cambridge University Press: Cambridge, UK).

[15]  H. Trinks, W. Schroder, C. Biebricher, Ice and the origin of life. Orig. Life Evol. Biosph. 2005, 35, 429.
CrossRef | CAS | PubMed |

[16]  B. Sattler, H. Puxbaum, R. Psenner, Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 2001, 28, 239.
CrossRef |

[17]  K. Kashefi, D. Lovley, Extending the upper temperature limit for life. Science 2003, 301, 934.
CrossRef | CAS | PubMed |

[18]  P. Price, T. Sowers, Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc. Natl. Acad. Sci. USA 2004, 101, 4631.
CrossRef | CAS |

[19]  D. Thomas, G. Dieckmann, Ocean science – Antarctic sea ice – a habitat for extremophites. Science 2002, 295, 641.
CrossRef | CAS | PubMed |

[20]  R. Mortazavi, C. T. Hayes, P. A. Ariya, Ice nucleation activity of bacteria isolated from snow compared with organic and inorganic substrates. Environ. Chem. 2008, 5, 373.
CrossRef | CAS |

[21]  J. Field, R. Sierra-Alvarez, Microbial degradation of chlorinated benzenes. Biodegradation 2008, 19, 463.
CrossRef | CAS | PubMed |

[22]  R. Dickhut, A. Cincinelli, M. Cochran, H. Ducklow, Atmospheric concentrations and air–water flux of organochlorine pesticides along the western Antarctic Peninsula. Environ. Sci. Technol. 2005, 39, 465.
CrossRef | CAS | PubMed |

[23]  P. Amato, R. Hennebelle, O. Magand, M. Sancelme, A. Delort, C. Barbante, C. Boutron, C. Ferrari, Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiol. Ecol. 2007, 59, 255.
CrossRef | CAS | PubMed |

[24]  P. Ariya, O. Nepotchatykh, O. Ignatova, M. Amyot, Microbiological degradation of atmospheric organic compounds. Geophys. Res. Lett. 2002, 29, 2077.
CrossRef |

[25]  G. Kos, P. Ariya, Determination of a wide range of volatile and semivolatile organic compounds in snow by use of solid-phase micro-extraction (SPME). Anal. Bioanal. Chem. 2006, 385, 57.
CrossRef | CAS | PubMed |

[26]  M. Narukawa, K. Kawamura, S. Li, J. Bottenheim, Dicarboxylic acids in the arctic aerosols and snowpacks collected during alert 2000. Atmos. Environ. 2002, 36, 2491.
CrossRef | CAS |

[27]  S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403..
| PubMed |

[28]  J. Felsenstein, Inferring Phylogenies 2004 (Sinauer Associates: Sunderland, MA).

[29]  F. Domine, M. Albert, T. Huthwelker, H. Jacobi, A. Kokhanovsky, M. Lehning, G. Picard, W. Simpson, Snow physics as relevant to snow photochemistry. Atmos. Chem. Phys. 2008, 8, 171.
CrossRef | CAS |

[30]  F. Wania, J. Hoff, C. Jia, D. Mackay, The effects of snow and ice on the environmental behaviour of hydrophobic organic chemicals. Environ. Pollut. 1998, 102, 25.
CrossRef | CAS |

[31]  J. Sun, P. Ariya, Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): a review. Atmos. Environ. 2006, 40, 795.
CrossRef | CAS |

[32]  H. Bauer, H. Giebl, R. Hitzenberger, A. Kasper-Giebl, G. Reischl, F. Zibuschka, H. Puxbaum, Airborne bacteria as cloud condensation nuclei. J. Geophys. Res. – Atmos. 2003, 108, 4658.
CrossRef |

[33]  P. Amato, M. Parazols, M. Sancelme, P. Laj, G. Mailhot, A. Delort, Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: major groups and growth abilities at low temperatures. FEMS Microbiol. Ecol. 2007, 59, 242.
CrossRef | CAS | PubMed |

[34]  C. Grote, E. Belau, K. Levsen, G. Wunsch, Development of a SPME-GC method for the determination of organic compounds in wastewater. Acta Hydrochim. Hydrobiol. 1999, 27, 193.
CrossRef | CAS |

[35]  K. Sieg, E. Fries, W. Puttmann, Analysis of benzene, toluene, ethylbenzene, xylenes and n-aldehydes in melted snow water via solid-phase dynamic extraction combined with gas chromatography/mass spectrometry. J. Chromatogr. A 2008, 1178, 178.
CrossRef | CAS | PubMed |

[36]  E. Fries, K. Sieg, W. Puttmann, W. Jaeschke, R. Winterhalter, J. Williams, G. Moortgat, Benzene, alkylated benzenes, chlorinated hydrocarbons and monoterpenes in snow–ice at Jungfraujoch (46.6°N, 8.0°E) during Clace 4 and 5. Sci. Total Environ. 2008, 391, 269.
CrossRef | CAS | PubMed |

[37]  B. Pons, M. Fernandez-Torroba, G. Ortiz, M. Tena, Monitoring and evolution of the pollution by volatile organic compounds (VOCS) in the groundwaters of the najerilla river basin (Spain). Int. J. Environ. Anal. Chem. 2003, 83, 495.
CrossRef | CAS |

[38]  J. Czuczwa, C. Leuenberger, W. Giger, Seasonal and temporal changes of organic compounds in rain and snow. Atmos. Environ. 1988, 22, 907.
CrossRef | CAS |

[39]  A. E. Cavender, T. A. Biesenthal, J. W. Bottenheim, P. B Shepson, Volatile organic compound ratios as probes of halogen atom chemistry in the arctic. Atmos. Chem. Phys. 2008, 8, 1737.
CrossRef | CAS |

[40]  A. M. Grannas, P. B. Shepson, C. Guimbaud, A. L. Sumner, M. Albert, W. Simpson, F. Domine, H. Boudries, J. Bottenheim, H. J. Beine, R. Honrath, X. Zhou, A study of photochemical and physical processes affecting carbonyl compounds in the arctic atmospheric boundary layer. Atmos. Environ. 2002, 36, 2733.
CrossRef | CAS |

[41]  D. Lary, D. Shallcross, Central role of carbonyl compounds in atmospheric chemistry. J. Geophys. Res. – Atmos. 2000, 105, 19771.
CrossRef | CAS |

[42]  J. Yang, R. E. Honrath, M. C. Peterson, J. E. Dibb, A. L. Sumner, P. B. Shepson, M. Frey, H.-W. Jacobi, A. Swanson, N. Blake, Impacts of snowpack emissions on deduced levels of OH and peroxy radicals at summit, Greenland. Atmos. Environ. 2002, 36, 2523.
CrossRef | CAS |

[43]  K. Kawamura, I. Kaplan, Motor exhaust emissions as a primary source for dicarboxylic-acids in Los Angeles ambient air. Environ. Sci. Technol. 1987, 21, 105.
CrossRef | CAS |

[44]  K. Kawamura, H. Kasukabe, L. Barrie, Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atmos. Environ. 1996, 30, 1709.
CrossRef | CAS |

[45]  B. Steven, R. Leveille, W. Pollard, L. Whyte, Microbial ecology and biodiversity in permafrost. Extremophiles 2006, 10, 259.
CrossRef | PubMed |

[46]  K. Stemmler, M. Ammann, C. Donders, J. Kleffmann, C. George, Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 2006, 440, 195.
CrossRef | CAS | PubMed |

[47]  G. Vali, Atmospheric ice nucleation – a review. J. Rech. Atmos. 1985, 19, 105..

[48]  C. Leck, E. Bigg, Biogenic particles in the surface microlayer and overlaying atmosphere in the central arctic ocean during summer. Tellus B Chem. Phys. Meterol. 2005, 57, 305.
CrossRef |

[49]  F. Dominé, T. Lauzier, A. Cabanes, L. Legagneux, W. Kuhs, K. Techmer, T. Heinrichs, Snow metamorphism as revealed by scanning electron microscopy. Microsc. Res. Tech. 2003, 62, 33.
CrossRef | PubMed |

[50]  W. Wergin, A. Rango, E. Erbe, C. Murphy, Low temperature SEM of precipitated and metamorphosed snow crystals collected and transported from remote sites. Microsc. Microanal. 1996, 2, 99..

[51]  W. Wergin, A. Rango, E. Erbe, Observations of snow crystals using low-temperature scanning electron-microscopy. Scanning 1995, 17, 41.
CrossRef |

[52]  T. Callaghan, L. Bjorn, Y. Chernov, T. Chapin, T. Christensen, B. Huntley, R. Ims, M. Johansson, D. Jolly, S. Jonasson, N. Matveyeva, N. Panikov, W. Oechel, G. Shaver, Effects on the function of arctic ecosystems in the short-and long-term perspectives. Ambio 2004, 33, 448..
| PubMed |

[53]  F. Domine, A. Taillandier, W. Simpson, A parameterization of the specific surface area of seasonal snow for field use and for models of snowpack evolution. J. Geophys. Res. – Earth 2007, 112, F02031.
CrossRef |

[54]  L. Legagneux, A. Cabanes, F. Domine, Measurement of the specific surface area of 176 snow samples using methane adsorption at 77 K. J. Geophys. Res. – Atmos. 2002, 107, 4335.
CrossRef |

[55]  U. Böckelmann, W. Manz, T. R. Neu, U. Szewzyk, Characterization of the microbial community of lotic organic aggregates (‘river snow’) in the Elbe River of Germany by cultivation and molecular methods. FEMS Microbiol. Ecol. 2000, 33, 157.
CrossRef | PubMed |

[56]  M. Alexander, Introduction to Soil Microbiology 1977 (Wiley: New York).

[57]  A. Grannas, A. Bausch, K. Mahanna, Enhanced aqueous photochemical reaction rates after freezing. J. Phys. Chem. A 2007, 111, 11043.
CrossRef | CAS | PubMed |

[58]  H. Okochi, D. Sugimoto, M. Igawa, The enhanced dissolution of some chlorinated hydrocarbons and monocyclic aromatic hydrocarbons in rainwater collected in Yokohama, Japan. Atmos. Environ. 2004, 38, 4403.
CrossRef | CAS |

[59]  J. Bower, E. Hood, L. Hoferkamp, Major solutes, metals, and alkylated aromatic compounds in high-latitude maritime snowpacks near the trans-Alaska pipeline terminal, Valdez, Alaska. Environ. Res. Lett. 2008, 3, 045010.
CrossRef |

[60]  E. Fries, W. Puttmann, Monitoring of the antioxidant BHT and its metabolite BHT-CHO in German river water and ground water. Sci. Total Environ. 2004, 319, 269.
CrossRef | CAS | PubMed |

[61]  M. Bao, F. Pantani, O. Griffini, D. Burrini, D. Santianni, K. Barbieri, Determination of carbonyl compounds in water by derivatisation–solid-phase microextraction and gas chromatographic analysis. J. Chromatogr. A 1998, 809, 75.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014