CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
Upcoming Research Front
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 7(6)

Gaseous mercury in coastal urban areas

Anne L. Soerensen A D, Henrik Skov A, Matthew S. Johnson B and Marianne Glasius C

A National Environmental Research Institute, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
B Copenhagen Center for Atmospheric Research, Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.
C Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark.
D Corresponding author. Email: anls@dmu.dk

Environmental Chemistry 7(6) 537-547 http://dx.doi.org/10.1071/EN10088
Submitted: 6 August 2010  Accepted: 12 October 2010   Published: 21 December 2010

PDF (414 KB) $25
 Export Citation

Environmental context. Mercury is a neurotoxin that bioaccumulates in the aquatic food web. Atmospheric emissions from urban areas close to the coast could cause increased local mercury deposition to the ocean. Our study adds important new data to the current limited knowledge on atmospheric mercury emissions and dynamics in coastal urban areas.

Abstract. Approximately 50% of primary atmospheric mercury emissions are anthropogenic, resulting from e.g. emission hotspots in urban areas. Emissions from urban areas close to the coast are of interest because they could increase deposition loads to nearby coastal waters as well as contribute to long range transport of mercury. We present results from measurements of gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) in 15 coastal cities and their surrounding marine boundary layer (MBL). An increase of 15–90% in GEM concentration in coastal urban areas was observed compared with the remote MBL. Strong RGM enhancements were only found in two cities. In urban areas with statistically significant GEM/CO enhancement ratios, slopes between 0.0020 and 0.0087 ng m–3 ppb–1 were observed, which is consistent with other observations of anthropogenic enhancement. The emission ratios were used to estimate GEM emissions from the areas. A closer examination of data from Sydney (Australia), the coast of Chile, and Valparaiso region (Chile) in the southern hemisphere, is presented.

Additional keywords: emissions, gaseous elemental mercury, GEM/CO ratios, reactive gaseous mercury.


[1]  R. P. Mason, W. F. Fitzgerald, The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 1993, 40, 1897.
CrossRef | CAS |

[2]  E. M. Sunderland, D. P. Krabbenhoft, J. W. Moreau, S. A. Strode, W. M. Landing, Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. Global Biogeochem. Cycles 2009, 23, GB2010.
CrossRef |

[3]  D. Mergler, H. A. Anderson, L. H. M. Chan, K. R. Mahaffey, M. Murray, M. Sakamoto, A. H. Stern, Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 2007, 36, 3.
CrossRef | CAS | PubMed |

[4]  A. M. Scheuhammer, M. W. Meyer, M. B. Sandheinrich, M. W. Murray, Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 2007, 36, 12.
CrossRef | CAS | PubMed |

[5]  R. P. Mason, G. R. Sheu, Role of the ocean in the global mercury cycle. Global Biogeochem. Cycles 2002, 16, 1093.
CrossRef |

[6]  J. M. Pacyna, J. Munthe, S. Wilson, Part A: global emissions of mercury to the atmosphere, in Technical Background Report to the Global Atmospheric Assessment 2008, pp. 3–63 (Arctic Monitoring and Assessment Programme; and UNEP Chemicals Branch). Available at http://www.chem.unep.ch/mercury/Atmospheric_Emissions/Technical_background_report.pdf [Verified 3 December 2010].

[7]  R. Ebinghaus, C. Banic, S. Beauchamp, D. Jaffe, H. H. Kock, N. Pirrone, L. Poissant, F. Sprovieri, P. Weiss-Penzias, Spatial coverage and temporal trends of landbased atmospheric mercury measurements in the northern and southern hemispheres, in Mercury Fate and Transport in the Global Atmosphere: Measurements, Models and Policy Implications (Eds N. Pirrone, R. Mason) 2008, pp. 168–219 (Springer: New York).

[8]  S. Lindberg, R. Bullock, R. Ebinghaus, D. Engstrom, X. B. Feng, W. Fitzgerald, N. Pirrone, E. Prestbo, C. Seigneur, A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 2007, 36, 19.
CrossRef | CAS | PubMed |

[9]  H. Skov, S. B. Brooks, M. E. Goodsite, S. E. Lindberg, T. P. Meyers, M. S. Landis, M. R. B. Larsen, B. Jensen, G. McConville, J. Christensen, Fluxes of reactive gaseous mercury measured with a newly developed method using relaxed eddy accumulation. Atmos. Environ. 2006, 40, 5452.
CrossRef | CAS |

[10]  A. L. Soerensen, H. Skov, D. J. Jacob, M. S. Johnson, B. T. Soerensen, Global concentrations of gaseous elemental mercury and reactive gaseous mercury in the marine boundary layer. Environ. Sci. Technol. 2010, 44, 7425.
CrossRef | CAS | PubMed |

[11]  E. G. Malcolm, G. J. Keeler, M. S. Landis, The effects of the coastal environment on the atmospheric mercury cycle. J. Geophys. Res. A 2003, 108, 4357.
CrossRef |

[12]  M. M. Lynam, G. J. Keeler, Automated speciated mercury measurements in Michigan. Environ. Sci. Technol. 2005, 39, 9253.
CrossRef | CAS | PubMed |

[13]  A. P. Rutter, J. J. Schauer, G. C. Lough, D. C. Snyder, C. J. Kolb, S. Von Klooster, T. Rudolf, H. Manolopoulos, M. L. Olson, A comparison of speciated atmospheric mercury at an urban center and an upwind rural location. J. Environ. Monit. 2008, 10, 102..
CrossRef | PubMed |

[14]  M. S. Landis, A. F. Vette, G. J. Keeler, Atmospheric mercury in the Lake Michigan basin: influence of the Chicago/Gary urban area. Environ. Sci. Technol. 2002, 36, 4508.
CrossRef | CAS | PubMed |

[15]  H. Chen, X. S. Yang, C. Perkins, Trend and variability of total gaseous mercury (TGM) in the state of Connecticut, USA during 1997–1999. Water Air Soil Pollut. 2004, 151, 103.
CrossRef | CAS |

[16]  X. J. Song, I. Cheng, J. Lu, Annual atmospheric mercury species in downtown Toronto, Canada. J. Environ. Monit. 2009, 11, 660.
CrossRef | CAS | PubMed |

[17]  A. H. Fostier, P. A. M. Michelazzo, Gaseous and particulate atmospheric mercury concentrations in the Campinas Metropolitan Region (Sao Paulo State, Brazil). J. Braz. Chem. Soc. 2006, 17, 886.
CrossRef | CAS |

[18]  F. Laurier, R. Mason, Mercury concentration and speciation in the coastal and open ocean boundary layer. J. Geophys. Res. A 2007, 112, D06302.
CrossRef |

[19]  P. Weiss-Penzias, D. A. Jaffe, A. McClintick, E. M. Prestbo, M. S. Landis, Gaseous elemental mercury in the marine boundary layer: evidence for rapid removal in anthropogenic pollution. Environ. Sci. Technol. 2003, 37, 3755.
CrossRef | CAS | PubMed |

[20]  M. Engle, M. Tate, D. Krabbenhoft, A. Kolker, M. Olson, E. Edgerton, J. DeWild, A. McPherson, Characterization and cycling of atmospheric mercury along the central US Gulf Coast. Appl. Geochem. 2008, 23, 419.
CrossRef | CAS |

[21]  E. G. Brunke, C. Labuschagne, R. Ebinghaus, H. H. Kock, F. Slemr, Gaseous elemental mercury depletion events observed at Cape Point during 2007–2008. Atmos. Chem. Phys. 2010, 10, 1121.
CrossRef | CAS |

[22]  E. G. Pacyna, J. M. Pacyna, F. Steenhuisen, S. Wilson, Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 2006, 40, 4048.
CrossRef | CAS |

[23]  P. Weiss-Penzias, D. A. Jaffe, P. Swartzendruber, J. B. Dennison, D. Chand, W. Hafner, E. Prestbo, Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J. Geophys. Res. A 2006, 111, D10304.
CrossRef |

[24]  P. Weiss-Penzias, D. Jaffe, P. Swartzendruber, W. Hafner, D. Chand, E. Prestbo, Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Atmos. Environ. 2007, 41, 4366.
CrossRef | CAS |

[25]  F. Slemr, R. Ebinghaus, P. G. Simmonds, S. G. Jennings, European emissions of mercury derived from long-term observations at Mace Head, on the western Irish coast. Atmos. Environ. 2006, 40, 6966.
CrossRef | CAS |

[26]  D. Jaffe, E. Prestbo, P. Swartzendruber, P. Weiss-Penzias, S. Kato, A. Takami, S. Hatakeyama, Y. Kajii, Export of atmospheric mercury from Asia. Atmos. Environ. 2005, 39, 3029.
CrossRef | CAS |

[27]  L. F. Radke, H. R. Friedli, B. G. Heikes, Atmospheric mercury over the NE Pacific during spring 2002: gradients, residence time, upper troposphere lower stratosphere loss, and long-range transport. J. Geophys. Res. A 2007, 112, D19305.
CrossRef |

[28]  R. Talbot, H. Mao, E. Scheuer, J. Dibb, M. Avery, E. Browell, G. Sachse, S. Vay, D. Blake, G. Huey, H. Fuelberg, Factors influencing the large-scale distribution of Hg degrees in the Mexico City area and over the North Pacific. Atmos. Chem. Phys. 2008, 8, 2103.
CrossRef | CAS |

[29]  H. R. Friedli, A. F. Arellano, S. Cinnirella, N. Pirrone, Initial estimates of mercury emissions to the atmosphere from global biomass burning. Environ. Sci. Technol. 2009, 43, 3507.
CrossRef | CAS | PubMed |

[30]  H. Mao, R. W. Talbot, J. M. Sigler, B. C. Sive, J. D. Hegarty, Seasonal and diurnal variations of Hg degrees over New England. Atmos. Chem. Phys. 2008, 8, 1403.
CrossRef | CAS |

[31]  D. Obrist, A. G. Hallar, I. Mccubbin, B. B. Stephens, T. Rahn, Atmospheric mercury concentrations at Storm Peak Laboratory in the Rocky Mountains: evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake. Atmos. Environ. 2008, 42, 7579.
CrossRef | CAS |

[32]  H. R. Friedli, L. F. Radke, R. Prescott, P. Li, J. H. Woo, G. R. Carmichael, Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: measurements, distributions, sources, and implications. J. Geophys. Res. A 2004, 109, D19S25.
CrossRef |

[33]  J. M. Sigler, H. Mao, R. Talbot, Gaseous elemental and reactive mercury in southern New Hampshire. Atmos. Chem. Phys. 2009, 9, 1929.
CrossRef | CAS |

[34]  M. E. R. Gustafsson, L. G. Franzen, Inland transport of marine aerosols in southern Sweden. Atmos. Environ. 2000, 34, 313..
CrossRef |

[35]  M. Kellerhals, S. Beauchamp, W. Belzer, P. Blanchard, F. Froude, B. Harvey, K. McDonald, M. Pilote, L. Poissant, K. Puckett, B. Schroeder, A. Steffen, R. Tordon, Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmos. Environ. 2003, 37, 1003.
CrossRef | CAS |

[36]  R. Vogt, P. J. Crutzen, R. Sander, A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer. Nature 1996, 383, 327.
CrossRef | CAS |

[37]  R. Sander, W. C. Keene, A. A. P. Pszenny, R. Arimoto, G. P. Ayers, E. Baboukas, J. M. Cainey, P. J. Crutzen, R. A. Duce, G. Honninger, B. J. Huebert, W. Maenhaut, N. Mihalopoulos, V. C. Turekian, R. Van Dingenen, Inorganic bromine in the marine boundary layer: a critical review. Atmos. Chem. Phys. 2003, 3, 1301.
CrossRef | CAS |

[38]  J. M. Pacyna, S. Wilson, F. Steenhuisen, Spatially Distributed Inventories of Global Anthropogenic Emissions of Mercury to the Atmosphere 2005 (Norwegian Institute for Air Research (NILU); the Arctic Monitoring and Assessment Programme (AMAP); and the Arctic Center, University of Groningen (RuG)). Available at www.amap.no/Resources/HgEmissions/ [Verified 3 December 2010].

[39]  P. F. Nelson, Atmospheric emissions of mercury from Australian point sources. Atmos. Environ. 2007, 41, 1717.
CrossRef | CAS |

[40]  D. K. Davies, S. Ilavajhala, M. M. Wong, C. O. Justice, Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans. Geosci. Rem. Sens. 2009, 47, 3298.
CrossRef |

[41]  R. P. Draxler, G. D. Rolph, HYSPLIT – Hybrid Single Particle Lagrangian Integrated Trajectory Model 2003 (NOAA Air Resources Laboratory: Silver Spring, MD). Available at http://www.arl.noaa.gov/ready/hysplit4.html [Verified 3 December 2010].

[42]  I. De Gregori, M. G. Lobos, H. Pinochet, Selenium and its redox speciation in rainwater from sites of Valparaíso region in Chile, impacted by mining activities of copper ores. Water Res. 2002, 36, 115.
CrossRef | CAS | PubMed |

[43]  H. Palma-Fleming, C. Cornejo, M. González, V. Pérez, M. González, E. Gutierrez, J. L. Sericano, M. Seeger, Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in coastal environments of Valvidia and Valparaíso, Chile. J. Chil. Chem. Soc. 2008, 53, 1533.
CrossRef | CAS |

[44]  H. Skov, J. H. Christensen, M. E. Goodsite, N. Z. Heidam, B. Jensen, P. Wahlin, G. Geernaert, Fate of elemental mercury in the arctic during atmospheric mercury depletion episodes and the load of atmospheric mercury to the arctic. Environ. Sci. Technol. 2004, 38, 2373.
CrossRef | CAS | PubMed |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016