CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(3)

The degradation of arsenoribosides from Ecklonia radiata tissues decomposed in natural and microbially manipulated microcosms

Elliott G. Duncan A C D , William A. Maher A , Simon D. Foster A , Frank Krikowa A and Katarina M. Mikac B

A Ecochemistry Laboratory, Institute for Applied Ecology, University of Canberra, University Drive, Bruce, ACT 2601, Australia.
B Institute for Conservation Biology and Environmental Management, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
C Present address, CSIRO Plant Industry, Centre for Environment and Life Sciences, Underwood Avenue, Floreat, WA 6014, Australia.
D Corresponding author. Email: elliott.duncan@csiro.au.

Environmental Chemistry 11(3) 289-300 http://dx.doi.org/10.1071/EN13155
Submitted: 19 August 2013  Accepted: 30 January 2014   Published: 5 June 2014


 
PDF (460 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Arsenoribosides are the major arsenic species in marine macro-algae, yet inorganic arsenic is the major arsenic species found in seawater. We investigated the degradation of arsenoribosides associated with Ecklonia radiata by the use of microcosms containing both natural and autoclaved seawater and sand. The decomposition and persistence of arsenic species was linked to the use of autoclaved seawater and sand, which suggests that arsenoriboside degradation is governed by the microbial composition of microenvironments within marine systems.

Abstract. We investigated the influence of microbial communities on the degradation of arsenoribosides from E. radiata tissues decomposing in sand and seawater-based microcosms. During the first 30 days, arsenic was released from decomposing E. radiata tissues into seawater and sand porewaters in all microcosms. In microcosms containing autoclaved seawater and autoclaved sand, arsenic was shown to persist in soluble forms at concentrations (9–18 µg per microcosm) far higher than those present initially (~3 µg per microcosm). Arsenoribosides were lost from decomposing E. radiata tissues in all microcosms with previously established arsenoriboside degradation products, such as thio-arsenic species, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA) and arsenate (AsV) observed in all microcosms. DMAE and DMA persisted in the seawater and sand porewaters of microcosms containing autoclaved seawater and autoclaved sand. This suggests that the degradation step from arsenoribosides → DMAE occurs on algal surfaces, whereas the step from DMAE → AsV occurs predominantly in the water-column or sand–sediments. This study also demonstrates that disruptions to microbial connectivity (defined as the ability of microbes to recolonise vacant habitats) result in alterations to arsenic cycling. Thus, the re-cycling of arsenoribosides released from marine macro-algae is driven by microbial complexity plus microbial connectivity rather than species diversity as such, as previously assumed.

Additional keywords: algal decomposition, arsenic cycling, macro-algae, microbial ecology.


References

[1]  R. Tukai, W. A. Maher, I. J. McNaught, M. J. Ellwood, M. Coleman, Occurrence and chemical form of arsenic in marine macroalgae from the east coast of Australia. Mar. Freshwater Res. 2002, 53, 971.
CrossRef | CAS |

[2]  S. Foster, W. Maher, F. Krikowa, Changes in proportions of arsenic species within an Ecklonia radiata food chain. Environ. Chem. 2008, 5, 176.
CrossRef | CAS |

[3]  D. Thomson, W. Maher, S. Foster, Arsenic and selected elements in inter-tidal and estuarine marine algae, south-east coast, NSW, Australia. Appl. Organomet. Chem. 2007, 21, 396.
CrossRef | CAS |

[4]  M. Morita, Y. Shibata, Chemical form of arsenic in marine macroalgae. Appl. Organomet. Chem. 1990, 4, 181.
CrossRef | CAS |

[5]  J. S. Edmonds, K. A. Francesconi, Arseno-sugars from brown kelp (Ecklonia radiata) as intermediates in cycling of arsenic in a marine ecosystem. Nature 1981, 289, 602.
CrossRef | CAS |

[6]  S. Foster, W. Maher, Degradation of arsenoribosides from marine macroalgae in simulated rock pools, in Arsenic in geosphere and human diseases (Eds J. S. Jean, J. Bundschuh, P. Battacharya) 2010, pp. 230–232 (CRC Press: London).

[7]  P. Pengprecha, M. Wilson, A. Raab, J. Feldmann, Biodegradation of arsenosugars in marine sediment. Appl. Organomet. Chem. 2005, 19, 819.
CrossRef | CAS |

[8]  J. Navratilova, G. Raber, S. J. Fisher, K. A. Francesconi, Arsenic cycling in marine systems: degradation of arsenosugars to arsenate in decomposing algae, and preliminary evidence for the formation of recalcitrant arsenic. Environ. Chem. 2011, 8, 44.
CrossRef | CAS |

[9]  J. S. Edmonds, K. A. Francesconi, J. A. Hansen, Dimethyloxarsylethanol from anaerobic decomposition of brown kelp (Ecklonia radiata): a likely precursor of arsenobetaine in marine fauna. Experientia 1982, 38, 643.
CrossRef | CAS |

[10]  K. A. Smart, H. L. Smart, C. R. Jackson, The effects of fine scale environmental variation on microbial community structure and functioning in aquatic environments, in Environmental Microbiology Research Trends (Ed. G. V. Kurladze) 2008, pp. 167–190 (Nova Science Publishers: New York).

[11]  J. C. Sanderson, Subtidal macroalgal assemblages in temperate Australian coastal waters, Australia. State of the Environment Technical Paper Series (Estuaries and the Sea) 1997 (Department of the Environment: Canberra).

[12]  S. Foster, D. Thomson, W. Maher, Uptake and metabolism of arsenate by anexic cultures of the microalgae Dunaliella tertiolecta and Phaeodactylum tricornutum. Mar. Chem. 2008, 108, 172.
CrossRef | CAS |

[13]  J. Cannon, J. Edmonds, K. Francesconi, C. Raston, J. Saunders, B. Skelton, A. H. White, Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine. Aust. J. Chem. 1981, 34, 787.
CrossRef | CAS |

[14]  R. Minhas, D. S. Forsyth, B. Dawson, Synthesis and characterization of arsenobetaine and arsenocholine derivatives. Appl. Organomet. Chem. 1998, 12, 635.
CrossRef | CAS |

[15]  A. Merijanian, R. A. Zingaro, Arsine oxides. Inorg. Chem. 1966, 5, 187.
CrossRef | CAS |

[16]  G. M. Momplaisir, J. S. Blais, M. Quinteiro, W. D. Marshall, Determination of arsenobetaine, arsenocholine, and tetramethylarsonium cations in seafoods and human urine by high-performance liquid chromatography-thermochemical hydride generation-atomic absorption spectrometry. J. Agric. Food Chem. 1991, 39, 1448.
CrossRef | CAS |

[17]  K. A. Francesconi, J. S. Edmonds, R. V. Stick, Accumulation of arsenic in yelloweye mullet (Aldrichetta forsteri) following oral administration of organoarsenic compounds and arsenate. Sci. Total Environ. 1989, 79, 59.
CrossRef | CAS | PubMed |

[18]  A. D. Madsen, W. Goessler, S. N. Pedersen, K. A. Francesconi, Characterization of an algal extract by HPLC-ICP-MS and LC-electrospray MS for use in arsenosugar speciation studies. J. Anal. At. Spectrom. 2000, 15, 657.
CrossRef | CAS |

[19]  R. Raml, W. Goessler, K. A. Francesconi, Improved chromatographic separation of thio-arsenic compounds by reversed-phase high performance liquid chromatography-inductively coupled plasma mass spectrometry. J. Chromatogr. A 2006, 1128, 164.
CrossRef | CAS | PubMed |

[20]  S. Baldwin, M. Deaker, W. Maher, Low volume microwave digestion of marine biological tissues for the measurement of trace elements. Analyst 1994, 119, 1701.
CrossRef | CAS | PubMed |

[21]  W. Maher, F. Krikowa, J. Kirby, A. Townsend, P. Snitch, Measurement of trace elements in marine environmental samples using solution ICPMS. Current and future applications. Aust. J. Chem. 2003, 56, 103.
CrossRef | CAS |

[22]  W. Maher, S. Foster, F. Krikowa, P. Snitch, G. Chapple, P. Craig, Measurement of trace metals and phosphorus in marine animal and plant tissues by low volume microwave digestion and ICPMS. J. Anal. At. Spectrom. 2001, 22, 361.
| CAS |

[23]  J. Kirby, W. Maher, Measurement of water-soluble arsenic species in freeze-dried marine animal tissues by microwave-assisted extraction and HPLC-ICP-MS. J. Anal. At. Spectrom. 2002, 17, 838.
CrossRef | CAS |

[24]  M. J. Ellwood, W. A. Maher, Measurement of arsenic species in marine sediments by high-performance liquid chromatography–inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2003, 477, 279.
CrossRef | CAS |

[25]  S. Foster, W. Maher, F. Krikowa, S. Apte, A microwave assisted sequential extraction of water and dilute acid soluble arsenic species from marine plant and animal tissues. Talanta 2007, 71, 537.
CrossRef | CAS | PubMed |

[26]  J. Kirby, W. Maher, M. Ellwood, F. Krikowa, Arsenic species determination in biological tissues by HPLC-ICP-MS and HPLC-HG-ICP-MS. Aust. J. Chem. 2004, 57, 957.
CrossRef | CAS |

[27]  W. A. Maher, S. Foster, F. Krikowa, E. Duncan, A. St John, K. Hug, J. W. Moreau, Thio arsenic species measurements in marine organisms and geothermal waters. Microchem. J. 2013, 111, 82.
CrossRef | CAS |

[28]  S. Foster, W. Maher, E. Schmeisser, A. Taylor, F. Krikowa, S. Apte, Arsenic speciation in a rocky intertidal marine food chain in NSW, Australia, revisited. Environ. Chem. 2006, 3, 304.
CrossRef | CAS |

[29]  E. Duncan, S. Foster, W. Maher, Uptake and metabolism of arsenate, methylarsonate and arsenobetaine by axenic cultures of the phytoplankton Dunaliella tertiolecta. Bot. Mar. 2010, 53, 377.
CrossRef | CAS |

[30]  E. G. Duncan, W. A. Maher, S. D. Foster, F. Krikowa, Influence of culture regime on arsenic cycling by the marine phytoplankton Dunaliella tertiolecta and Thalassiosira pseudonana. Environ. Chem. 2013, 10, 91.
CrossRef | CAS |

[31]  K. J. Reimer, The methylation of arsenic in marine sediments. Appl. Organomet. Chem. 1989, 3, 475.
CrossRef | CAS |

[32]  D. Páez-Espino, J. Tamames, V. de Lorenzo, D. Canovas, Microbial responses to environmental arsenic. Biometals 2009, 22, 117.
CrossRef | PubMed |

[33]  R. Bentley, T. G. Chasteen, Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol. Mol. Biol. Rev. 2002, 66, 250.
CrossRef | CAS | PubMed |

[34]  F. Azam, T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil, F. Thingstad, The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 1983, 10, 257.
CrossRef |

[35]  S. Kjelleberg, M. Hermansson, P. Marden, The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu. Rev. Microbiol. 1987, 41, 25.
CrossRef | CAS | PubMed |

[36]  E. F. Delong, D. G. Franks, A. L. Alldredge, Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol. Oceanogr. 1993, 38, 924.
CrossRef |

[37]  L. Gram, J. Melchiorsen, J. B. Bruhn, Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. Mar. Biotechnol. (NY) 2010, 12, 439.
CrossRef | CAS | PubMed |

[38]  K. G. Boyd, D. R. Adams, J. G. Burgess, Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling 1999, 14, 227.
CrossRef |

[39]  H. Kirkman, G. Kendrick, Ecological significance and commercial harvesting of drifting and beach-cast macro-algae and seagrasses in Australia: a review. J. Appl. Phycol. 1997, 9, 311.
CrossRef |

[40]  E. Armstrong, L. Yan, K. G. Boyd, P. C. Wright, J. G. Burgess, The symbiotic role of marine microbes on living surfaces. Hydrobiologia 2001, 461, 37.
CrossRef |

[41]  M. Rieper-Kirchner, Microbial degradation of North Sea macroalgae: field and laboratory studies. Bot. Mar. 1989, 32, 241.
CrossRef |

[42]  G. C. Pellikaan, Laboratory experiments on eelgrass (Zostera marina L.) decomposition. Neth. J. Sea Res. 1984, 18, 360.
CrossRef | CAS |

[43]  J. M. Hill, C. D. McQuaid, Variability in the fractionation of stable isotopes during degradation of two intertidal red algae. Estuar. Coast. Shelf Sci. 2009, 82, 397.
CrossRef | CAS |

[44]  H. Higgins, D. Mackey, Role of Ecklonia radiata (C.Ag.) J.Agardh in determining trace metal availability in coastal waters. II. Trace metal speciation. Mar. Freshwater Res. 1987, 38, 317.
CrossRef | CAS |

[45]  H. Urakawa, K. Kita-Tsukamoto, K. Ohwada, Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 1999, 145, 3305.
| CAS | PubMed |

[46]  N. Velmurugan, D. Kalpana, J.-Y. Cho, G.-H. Lee, S.-H. Park, Y.-S. Lee, Phylogenetic analysis of culturable marine bacteria in sediments from South Korean Yellow Sea. Microbiology 2011, 80, 261.
CrossRef | CAS |

[47]  S. A. Gerlach, Food-chain relationships in subtidal silty sand marine sediments and the role of meiofauna in stimulating bacterial productivity. Oecologia 1978, 33, 55.
CrossRef |

[48]  A. Bellgrove, M. N. Clayton, G. P. Quinn, An integrated study of the temporal and spatial variation in the supply of propagules, recruitment and assemblages of intertidal macroalgae on a wave-exposed rocky coast, Victoria, Australia. J. Exp. Mar. Biol. Ecol. 2004, 310, 207.
CrossRef |

[49]  M. O. Andreae, Distribution and speciation of arsenic in natural waters and some marine algae. Deep-Sea Res. 1978, 25, 391.
CrossRef | CAS |

[50]  G. E. Millward, L. Ebdon, A. P. Walton, Seasonality in estuarine sources of methylated arsenic. Appl. Organomet. Chem. 1993, 7, 499.
CrossRef | CAS |

[51]  G. E. Millward, H. J. Kitts, S. D. W. Comber, L. Ebdon, A. G. Howard, Methylated arsenic in the southern North Sea. Estuar. Coast. Shelf Sci. 1996, 43, 1.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014