CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(3)

Effects of nitrate and humic acid on enrofloxacin photolysis in an aqueous system under three light conditions: kinetics and mechanism

Yang Li A , Junfeng Niu A B , Enxiang Shang A , Mengyuan Zheng A and Tianlai Luan A

A State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China.
B Corresponding author. Email: junfengn@bnu.edu.cn

Environmental Chemistry 11(3) 333-340 http://dx.doi.org/10.1071/EN13192
Submitted: 23 October 2013  Accepted: 11 March 2014   Published: 10 June 2014


 
PDF (658 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Photolysis is one of the most important transformation pathways in natural ecosystem for enrofloxacin (Enro), which is a hazard for humans and other living organisms. The effects of NO3 and humic acid on Enro photolysis were found to be light-source dependent. These results are of significance toward the goal of providing insight into the transformation and fate of Enro in the environment.

Abstract. The light-source-dependent effects of NO3 and humic acid (HA) on enrofloxacin (Enro) photolysis kinetics in aqueous solutions were investigated under solar, UV-254 and UV-365 lamp irradiation. NO3 was found to suppress Enro photolysis through competitive photoabsorption under UV-365 irradiation, whereas it accelerated Enro photolysis under UV-254 and solar irradiation as a result of NO3 photosensitisation. Similarly, HA enhanced, inhibited or had no obvious effect on Enro photolysis under different light irradiation conditions. Even under the same light irradiation conditions, the effect of HA on Enro photolysis varied with HA concentration. The reactive oxygen species (ROS) scavenger experiments demonstrated that Enro photolysis undergoes OH- and 1O2-mediated self-sensitised photolysis. The photolysis pathway of Enro involved decarboxylation, defluorination and piperazinyl N4-dealkylation reactions. The toxicity towards Vibrio fischeri luminescent bacteria under solar irradiation was different from that under UV irradiation. The 90-min toxicity of Enro and its photoproducts increased under solar irradiation but decreased under UV-365 and UV-254 irradiation compared to the initial Enro toxicity, which indicated that UV light not only had higher photolysis efficiency but also posed less toxicity towards bacteria than solar.

Additional keyword: photoproducts, sunlight, toxicity, UV light.


References

[1]  M. R. Cooper, C. R. Durand, M. T. Beaulac, M. Steinberg, Single-agent, broad-spectrum fluoroquinolones for the outpatient treatment of low-risk febrile neutropenia. Ann. Pharmacother. 2011, 45, 1094.
CrossRef | CAS | PubMed |

[2]  T. E. Albertson, B. M. Morrissey, A. L. Chan, Are fluoroquinolones superior antibiotics for the treatment of community-acquired pneumonia? Curr. Infect. Dis. Rep. 2012, 14, 317.
CrossRef | PubMed |

[3]  K. Molbak, Spread of resistant bacteria and resistance genes from animals to humans-The public health consequences. J. Vet. Med. B 2004, 51, 364.
CrossRef | CAS |

[4]  M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Fasani, A. Albini, Photochemical degradation of marbofloxacin and enrofloxacin in natural waters. Environ. Sci. Technol. 2010, 44, 4564.
CrossRef | CAS | PubMed |

[5]  A. de Jong, B. Stephan, P. Silley, Fluoroquinolone resistance of Escherichia coli and Salmonella from healthy livestock and poultry in the EU. J. Appl. Microbiol. 2012, 112, 239.
CrossRef | CAS | PubMed |

[6]  H. G. Wetzstein, J. Schneider, W. Karl, Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl. Microbiol. Biotechnol. 2006, 71, 90.
CrossRef | CAS |

[7]  F. Pirro, In vitro activity of enrofloxacin and other fluoroquinolones in companion and livestock animals. Tierarztl. Umsch. 2000, 55, 389.

[8]  L. Ge, J. Chen, X. Wei, S. Zhang, X. Qiao, X. Cai, Q. Xie, Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate fffects of main water constituents. Environ. Sci. Technol. 2010, 44, 2400.
CrossRef | CAS | PubMed |

[9]  D. G. J. Larsson, C. de Pedro, N. Paxeus, Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007, 148, 751.
CrossRef | CAS |

[10]  K. H. Wammer, A. R. Korte, R. A. Lundeen, J. E. Sundberg, K. McNeill, W. A. Arnold, Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin. Water Res. 2013, 47, 439.
CrossRef | CAS | PubMed |

[11]  S. Babić, M. Periša, I. Škoric, Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 2013, 91, 1635.
CrossRef | PubMed |

[12]  C. W. Knapp, L. A. Cardoza, J. N. Hawes, E. M. H. Wellington, C. K. Larive, D. W. Graham, Fate and effects of enrofloxacin in aquatic systems under different light conditions. Environ. Sci. Technol. 2005, 39, 9140.
CrossRef | CAS | PubMed |

[13]  J. Fisher, J. Reese, P. Pellechia, P. Moeller, J. Ferry, Role of FeIII, phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment. Environ. Sci. Technol. 2006, 40, 2200.
CrossRef | CAS | PubMed |

[14]  D. E. Latch, K. McNeill, Microheterogeneity of singlet oxygen distributions in irradiated humic acid solutions. Science 2006, 311, 1743.
CrossRef | CAS | PubMed |

[15]  L. E. Jacobs, L. K. Weavers, E. F. Houtz, Y. P. Chin, Photosensitized degradation of caffeine: role of fulvic acids and nitrate. Chemosphere 2012, 86, 124.
CrossRef | CAS | PubMed |

[16]  P. Schmitt-Kopplin, J. Burhenne, D. Freitag, M. Spiteller, A. Kettrup, Development of capillary electrophoresis methods for the analysis of fluoroquinolones and application to the study of the influence of humic substances on their photodegradation in aqueous phase. J. Chromatogr. A 1999, 837, 253.
CrossRef | CAS |

[17]  Y. Li, J. F. Niu, W. L. Wang, Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: kinetics, mechanism and toxicity of photolysis products. Chemosphere 2011, 85, 892.
CrossRef | CAS | PubMed |

[18]  J. Burhenne, M. Ludwig, P. Nikoloudis, M. Spiteller, Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. 1. Primary photoproducts and half-lives. Environ. Sci. Pollut. Res. 1997, 4, 10.
CrossRef | CAS |

[19]  J. Burhenne, M. Ludwig, M. Spiteller, Photolytic degradation of fluoroquinolone carboxylic acids in aqueous solution. 2. Isolation and structural elucidation of polar photometabolites. Environ. Sci. Pollut. Res. 1997, 4, 61.
CrossRef | CAS |

[20]  C. Rensheng, L. Shihua, K. Ersi, Y. Jianping, J. Xibin, Estimating daily global radiation using two types of revised models in China. Energy Convers. Manage. 2006, 47, 865.
CrossRef |

[21]  Y. Li, J. F. Niu, L. F. Yin, W. L. Wang, Y. P. Bao, J. Chen, Y. P. Duan, Photocatalytic degradation kinetics and mechanism of pentachlorophenol based on superoxide radicals. J. Environ. Sci. (China) 2011, 23, 1911.
CrossRef | CAS | PubMed |

[22]  M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. Fasani, A. Albini, Sunlight-induced degradation of soil-adsorbed veterinary antimicrobials Marbofloxacin and Enrofloxacin. Chemosphere 2012, 86, 130.
CrossRef | CAS | PubMed |

[23]  M. Sturini, A. Speltini, F. Maraschi, L. Pretali, A. Profumo, E. Fasani, A. Albini, R. Migliavacca, E. Nucleo, Photodegradation of fluoroquinolones in surface water and antimicrobial activity of the photoproducts. Water Res. 2012, 46, 5575.
CrossRef | CAS | PubMed |

[24]  M. Sturini, A. Speltini, F. Maraschi, A. Profumo, L. Pretali, E. A. Irastorza, E. Fasani, A. Albini, Photolytic and photocatalytic degradation of fluoroquinolones in untreated river water under natural sunlight. Appl. Catal. B 2012, 119–120, 32.
CrossRef |

[25]  X. Hong, Z. Wang, W. Cai, F. Lu, J. Zhang, Y. Yang, N. Ma, Y. Liu, Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem. Mater. 2005, 17, 1548.
CrossRef | CAS |

[26]  L. Ge, J. Chen, X. Qiao, J. Lin, X. Cai, Light-source-dependent effects of main water constituents on photodegradation of phenicol antibiotics: mechanism and kinetics. Environ. Sci. Technol. 2009, 43, 3101.
CrossRef | CAS | PubMed |

[27]  J. Mack, J. Bolton, Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. Chem. 1999, 128, 1.
CrossRef | CAS |

[28]  R. Andreozzi, M. Canterino, R. Giudice, R. Marotta, G. Pinto, A. Pollio, Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Res. 2006, 40, 630.
CrossRef | CAS | PubMed |

[29]  C. Li, N. Y. Gao, L. Wang, Y. G. Shen, Hydrogen peroxide-assisted low pressure UV photodegradation of atrazine in aqueous solution. Int. J. Environ. Stud. 2012, 69, 625.
CrossRef | CAS |

[30]  N. Takahashi, M. Ito, N. Mikami, T. Matsuda, J. Miyamoto, Identification of reactive oxygen species generated by irradiation of aqueous humid acid solution. J. Pestic. Sci. 1988, 13, 429.
CrossRef | CAS |

[31]  J. P. Aguer, C. Richard, Reactive species produced on irradiation at 365 nm of aqueous solutions of humic acids. J. Photochem. Photobiol. Chem. 1996, 93, 193.
CrossRef | CAS |

[32]  H.-R. Park, T. H. Kim, K.-M. Bark, Physicochemical properties of quinolone antibiotics in various environments. Eur. J. Med. Chem. 2002, 37, 443.
CrossRef | CAS | PubMed |

[33]  M. J. Lima, M. E. Leblebici, M. M. Dias, J .C. B. Lopes, C. G. Silva, A. M. T. Silva, J. L. Faria, Continuous flow photo-Fenton treatment of ciprofloxacin in aqueous solutions using homogeneous and magnetically recoverable catalysts. Environ. Sci. Pollut. Res. 2014, [Published online early 23 January 2014]
CrossRef |

[34]  R. H. O. Montes, M. C. Marra, M. M. Rodrigues, E. M. Richter, R. A. A. Munoz, Fast determination of ciprofloxacin by batch injection analysis with amperometric detection and capillary electrophoresis with capacitively coupled contactless conductivity detection. Electroanalysis 2014, 26, 432.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014