CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(3)

Modelling proton and metal binding to humic substances with the NICA–EPN model

Andrea C. Montenegro A , Silvia Orsetti B and Fernando V. Molina A C

A Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE) and Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina.
B Present address: Institut für Geowissenschaften, Zentrum für angewandte Geowissenschaften, Eberhard-Karls Universität Tübingen, D-72074 Tübingen, Germany.
C Corresponding author. E-mail: fmolina@qi.fcen.uba.ar

Environmental Chemistry 11(3) 318-332 http://dx.doi.org/10.1071/EN13214
Submitted: 26 November 2013  Accepted: 7 March 2014   Published: 10 June 2014


 
PDF (612 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. The toxicity of metals in the environment is greatly influenced by natural organic matter owing to its ability to bind metals to form complexes that can be immobile and non-bioavailable. Sound mathematical models are important to reliably predict the behaviour of such contaminants, and how they are affected by organic matter and other environmental colloids. Here a new model is discussed and compared with precedent ones.

Abstract. The mathematical modelling of metal cation–natural organic matter interactions is a fundamental tool in predicting the state and fate of pollutants in the environment. In this work, the binding of protons and metal cations to humic substances is modelled applying the Elastic Polyelectrolyte Network (EPN) electrostatic model with the Non-Ideal Competitive Adsorption (NICA) isotherm as the intrinsic part (NICA–EPN model). Literature data of proton and metal binding to humic substances at different pH and ionic strength values are analysed, discussing in depth the model predictions. The NICA–EPN model is found to describe well these phenomena. The electrostatic contribution to the Gibbs free energy of adsorbate–humic interaction in the EPN model is lower than that predicted by the Donnan phase model; the intrinsic mean binding constants for protons and metal cations are generally higher, closer to independent estimations and to the range of acid–base and complexation equilibrium values for common carboxylic acids. The results for metal cations are consistent with recent literature findings. The model predicts shrinking of the humic particles with increased metal binding, as a consequence of net charge decrease.



References

[1]  J. Ephraim, S. Alegret, A. Mathuthu, M. Bicking, R. L. Malcolm, J. A. Marinsky, A unified physicochemical description of the protonation and metal ion complexation equilibria of natural organic acids (humic and fulvic acids). 2. Influence of polyelectrolyte properties and functional group heterogeneity on the protonation equilibria of fulvic acid. Environ. Sci. Technol. 1986, 20, 354.
CrossRef | CAS | PubMed |

[2]  N. Senesi, E. Loffredo, Metal ion complexation by humic substances, in Chemical Processes in Soils (Eds M. A. Tabatabai, D. L. Sparks) 2005, pp. 563–617 (Soil Science Society of America: Madison, WI).

[3]  S. Sen Gupta, K. G. Bhattacharyya, Kinetics of adsorption of metal ions on inorganic materials: a review. Adv. Colloid Interface Sci. 2011, 162, 39.
CrossRef | CAS | PubMed |

[4]  C. E. Clapp, M. H. B. Hayes, A. J. Simpson, W. L. Kingery, Chemistry of soil organic matter, in Chemical Processes in Soils (Eds M. A. Tabatabai, D. L. Sparks) 2005, pp. 1–150 (Soil Science Society of America: Madison, WI).

[5]  J. A. Baldock, P. N. Nelson, Soil organic matter, in Handbook of Soil Science (Ed. M. L. Sumner) 1999, pp. B75–B84 (CRC: Boca Raton, Fl).

[6]  Á. Zsolnay, Dissolved organic matter: artefacts, definitions, and functions. Geoderma 2003, 113, 187.
CrossRef | CAS |

[7]  S. Orsetti, E. M. Andrade, F. V. Molina, Application of a constrained regularization method to extraction of affinity distributions: proton and metal binding to humic substances. J. Colloid Interface Sci. 2009, 336, 377.
CrossRef | CAS | PubMed |

[8]  A. J. Simpson, W. L. Kingery, M. H. Hayes, M. Spraul, E. Humpfer, P. Dvortsak, R. Kerssebaum, M. Godejohann, M. Hofmann, Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 2002, 89, 84.
CrossRef | CAS | PubMed |

[9]  M. Hosse, K. J. Wilkinson, Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength. Environ. Sci. Technol. 2001, 35, 4301.
CrossRef | CAS | PubMed |

[10]  J. F. L. Duval, K. J. Wilkinson, H. P. Van Leeuwen, J. Buffle, Humic substances are soft and permeable: evidence from their electrophoretic mobilities. Environ. Sci. Technol. 2005, 39, 6435.
CrossRef | CAS |

[11]  J. Buffle, R. S. Altmann, M. Filella, A. Tessier, Complexation by natural heterogeneous compounds: site occupation distribution functions, a normalized description of metal complexation. Geochim. Cosmochim. Acta 1990, 54, 1535.
CrossRef | CAS |

[12]  E. Tipping, Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3.
CrossRef | CAS |

[13]  J. P. Gustafsson, P. Pechova, D. Berggren, Modeling metal binding to soils: the role of natural organic matter. Environ. Sci. Technol. 2003, 37, 2767.
CrossRef | CAS | PubMed |

[14]  S. Goldberg, Equations and models describing adsorption processes in soils, in Chemical Processes in Soils (Eds M. A. Tabatabai, D. L. Sparks) 2005, pp. 489–518 (Soil Science Society of America: Madison, WI).

[15]  F. V. Molina, Soil Colloids: Properties and Ion Binding 2013 (CRC Press: Boca Raton, FL).

[16]  E. Tipping, S. Lofts, J. E. Sonke, Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ. Chem. 2011, 8, 225.
CrossRef | CAS |

[17]  D. G. Kinniburgh, C. J. Milne, M. F. Benedetti, J. P. Pinheiro, J. Filius, L. K. Koopal, W. H. Van Riemsdijk, Metal ion binding by humic acid: application of the NICA–Donnan model. Environ. Sci. Technol. 1996, 30, 1687.
CrossRef | CAS |

[18]  M. F. Benedetti, W. H. Van Riemsdijk, L. K. Koopal, Humic substances considered as a heterogeneous Donnan gel phase. Environ. Sci. Technol. 1996, 30, 1805.
CrossRef | CAS |

[19]  C. J. Milne, D. G. Kinniburgh, W. H. van Riemsdijk, E. Tipping, Generic NICA–Donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958.
CrossRef | CAS | PubMed |

[20]  J. B. Christensen, E. Tipping, D. G. Kinniburgh, C. Grøn, T. H. Christensen, Proton binding by groundwater fulvic acids of different age, origins, and structure modeled with the model V and NICA–Donnan model. Environ. Sci. Technol. 1998, 32, 3346.
CrossRef | CAS |

[21]  M. J. Avena, A. W. P. Vermeer, L. K. Koopal, Volume and structure of humic acids studied by viscometry pH and electrolyte concentration effects. Colloids Surf. A Physicochem. Eng. Asp. 1999, 151, 213.
CrossRef | CAS |

[22]  G. Chilom, J. A. Rice, Structural organization of humic acid in the solid state. Langmuir 2009, 25, 9012.
CrossRef | CAS | PubMed |

[23]  S. Orsetti, E. M. Andrade, F. V. Molina, Modeling ion binding to humic substances: Elastic Polyelectrolyte Network model. Langmuir 2010, 26, 3134.
CrossRef | CAS | PubMed |

[24]  S. Orsetti, J. L. Marco-Brown, E. M. Andrade, F. V. Molina, PbII binding to humic substances: an equilibrium and spectroscopic study. Environ. Sci. Technol. 2013, 47, 8325.
| CAS | PubMed |

[25]  T. L. Hill, Some statistical mechanical models of elastic polyelectrolytes and proteins. J. Chem. Phys. 1952, 20, 1259.
CrossRef | CAS |

[26]  E. Dinar, T. F. Mentel, Y. Rudich, The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmos. Chem. Phys. 2006, 6, 5213.
CrossRef | CAS |

[27]  C. J. Milne, D. G. Kinniburgh, E. Tipping, Generic NICA–Donnan model parameters for proton binding by humic substances. Environ. Sci. Technol. 2001, 35, 2049.
CrossRef | CAS | PubMed |

[28]  A. Matynia, T. Lenoir, B. Causse, L. Spadini, T. Jacquet, A. Manceau, Semi-empirical proton binding constants for natural organic matter. Geochim. Cosmochim. Acta 2010, 74, 1836.
CrossRef | CAS |

[29]  P. J. Flory, Themodynamics of high polymer solutions. J. Chem. Phys. 1942, 10, 51.
CrossRef | CAS |

[30]  P. J. Flory, Statistical mechanics of swelling of network structures. J. Chem. Phys. 1950, 18, 108.
CrossRef | CAS |

[31]  D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti, M. J. Avena, Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids Surf. A Physicochem. Eng. Asp. 1999, 151, 147.
CrossRef | CAS |

[32]  B. Pernet-Coudrier, E. Companys, J. Galceran, M. Morey, J.-M. Mouchel, J. Puy, N. Ruiz, G. Varrault, Pb-binding to various dissolved organic matter in urban aquatic systems: key role of the most hydrophilic fraction. Geochim. Cosmochim. Acta 2011, 75, 4005.
CrossRef | CAS |

[33]  E. Companys, J. Puy, J. Galceran, Humic acid complexation to Zn and Cd determined with the new electroanalytical technique AGNES. Environ. Chem. 2007, 4, 347.
| CAS |

[34]  I. Christl, Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids. Environ. Chem. 2012, 9, 89.
CrossRef | CAS |

[35]  C. W. Davies, Ion Association 1962 (Butterworths: London).

[36]  M. I. A. Lourakis, Levmar: Levenberg-Marquardt Nonlinear Least Squares Algorithms in C/C++ 2004 (Institute of Computer Science, FORTH: Heraklion, Crete, Greece).

[37]  J. P. Gustafsson, Visual Minteq. 2011 (KTH, Department of Land and Water Resources Engineering.: Stockholm, Sweden).

[38]  V. T. Athavale, L. H. Prabhu, D. G. Vartak, Solution stability constants of some metal complexes of derivatives of catechol. J. Inorg. Nucl. Chem. 1966, 28, 1237.
CrossRef | CAS |

[39]  E. Furia, R. Porto, The hydrogen salicylate ion as ligand. complex formation equilibria with dioxouranium(VI), neodymium(III) and lead(II). Ann. Chim. 2004, 94, 795.
CrossRef | CAS | PubMed |

[40]  J. P. Gustafsson, Modeling the acid-base properties and metal complexation of humic substances with the Stockholm Humic Model. J. Colloid Interface Sci. 2001, 244, 102.
CrossRef | CAS |

[41]  T. Lenoir, A. Matynia, A. Manceau, Convergence-optimized procedure for applying the NICA–Donnan model to potentiometric titrations of humic substances. Environ. Sci. Technol. 2010, 44, 6221.
CrossRef | CAS | PubMed |

[42]  M. J. Avena, L. K. Koopal, W. H. van Riemsdijk, Proton binding to humic acids: electrostatic and intrinsic interactions. J. Colloid Interface Sci. 1999, 217, 37.
CrossRef | CAS | PubMed |

[43]  M. B. Hay, S. C. B. Myneni, Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1. Infrared spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3518.
CrossRef | CAS |

[44]  Y. B. Atalay, R. F. Carbonaro, D. M. Di Toro, Distribution of proton dissociation constants for model humic and fulvic acid molecules. Environ. Sci. Technol. 2009, 43, 3626.
CrossRef | CAS | PubMed |

[45]  A. P. Deshmukh, C. Pacheco, M. B. Hay, S. C. B. Myneni, Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2-D NMR spectroscopy. Geochim. Cosmochim. Acta 2007, 71, 3533.
CrossRef | CAS |

[46]  A. Kirishima, T. Ohnishi, N. Sato, O. Tochiyama, Determination of the phenolic-group capacities of humic substances by non-aqueous titration technique. Talanta 2009, 79, 446.
CrossRef | CAS | PubMed |

[47]  N. Senesi, E. Loffredo, The chemistry of soil organic matter, in Soil Physical Chemistry (Ed. D. L. Sparks) 1998, pp. 239–370 (CRC Press: Boca Raton, Fl).

[48]  J. P. Pinheiro, A. M. Mota, M. F. Benedetti, Effect of aluminum competition on lead and cadmium binding to humic acids at variable ionic strength. Environ. Sci. Technol. 2000, 34, 5137.
CrossRef | CAS |

[49]  W. H. Otto, S. D. Burton, W. Robert Carper, C. K. Larive, Examination of cadmium(II) complexation by the Suwannee River fulvic acid using 113Cd NMR relaxation measurements. Environ. Sci. Technol. 2001, 35, 4900.
CrossRef | CAS | PubMed |

[50]  K. Xia, W. Bleam, P. A. Helmke, Studies of the nature of Cu2+ and Pb2+ binding sites in soil humic substances using X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 1997, 61, 2211.
CrossRef | CAS |

[51]  A. Terbouche, C. A. Ramdane-Terbouche, D. Hauchard, S. Djebbar, Evaluation of adsorption capacities of humic acids extracted from Algerian soil on polyaniline for application to remove pollutants such as CdII, ZnII and NiII and characterization with cavity microelectrode. J. Environ. Sci. (China) 2011, 23, 1095.
CrossRef | CAS | PubMed |

[52]  T. Karlsson, P. Persson, U. Skyllberg, Complexation of copper(II) in organic soils and in dissolved organic matter – EXAFS evidence for chelate ring structures. Environ. Sci. Technol. 2006, 40, 2623.
CrossRef | CAS | PubMed |

[53]  J. Xiong, L. K. Koopal, W. Tan, L. Fang, M. Wang, W. Zhao, F. Liu, J. Zhang, L. P. Weng, Lead binding to soil fulvic and humic acids: NICA–Donnan modeling and XAFS spectroscopy. Environ. Sci. Technol. 2013, 47, 11634.
CrossRef | CAS | PubMed |

[54]  J. Puy, J. Galceran, C. Huidobro, E. Companys, N. Samper, J. L. Garcés, F. Mas, Conditional affinity spectra of Pb2+–humic acid complexation from data obtained with AGNES. Environ. Sci. Technol. 2008, 42, 9289.
CrossRef | CAS | PubMed |

[55]  A. Manceau, M.-C. Boisset, G. Sarret, J.-L. Hazemann, M. Mench, P. Cambier, R. Prost, Direct determination of lead speciation in contaminated soils by EXAFS spectroscopy. Environ. Sci. Technol. 1996, 30, 1540.
CrossRef | CAS |

[56]  Y. Arai, A. R. Rick, T. Saylor, E. Faas, R. Tappero, A. Lanzirotti, Macroscopic and molecular-scale assessment of soil lead contamination impacted by seasonal dove hunting activities. J. Soils Sediments 2011, 11, 968.
CrossRef | CAS |

[57]  A. P. Robertson, Goethite/Humic Acid Interactions and their Effects on Copper(II) Binding 1996, Ph.D. Thesis, Stanford University, Stanford, CA.

[58]  P. H. Hsu, T. F. Bates, Formation of X-ray amorphous and crystalline aluminium hydroxides. Mineral. Mag. 1964, 33, 749.
CrossRef | CAS |

[59]  B. Stolpe, L. Guo, A. M. Shiller, G. R. Aiken, Abundance, size distributions and trace-element binding of organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS. Geochim. Cosmochim. Acta 2013, 105, 221.
CrossRef | CAS |

[60]  W. Tan, J. Xiong, Y. Li, M. Wang, L. Weng, L. K. Koopal, Proton binding to soil humic and fulvic acids: experiments and NICA–Donnan modeling. Colloids Surf. A Physicochem. Eng. Asp. 2013, 436, 1152.
CrossRef | CAS |

[61]  B. A. Browne, C. T. Driscoll, pH-dependent binding of aluminum by a fulvic acid. Environ. Sci. Technol. 1993, 27, 915.
CrossRef | CAS |

[62]  J. P. Pinheiro, A. M. Mota, M. F. Benedetti, Lead and calcium binding to fulvic acids: salt effect and competition. Environ. Sci. Technol. 1999, 33, 3398.
CrossRef | CAS |

[63]  S. E. Cabaniss, M. S. Shuman, Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria. Geochim. Cosmochim. Acta 1988, 52, 185.
CrossRef | CAS |

[64]  I. Christl, C. J. Milne, D. G. Kinniburgh, R. Kretzschmar, Relating ion binding by fulvic and humic acids to chemical composition and molecular size. 2. Metal binding. Environ. Sci. Technol. 2001, 35, 2512.
CrossRef | CAS | PubMed |

[65]  M. F. Benedetti, C. J. Milne, D. G. Kinniburgh, W. H. Van Riemsdijk, L. K. Koopal, Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environ. Sci. Technol. 1995, 29, 446.
CrossRef | CAS | PubMed |

[66]  A. M. Mota, A. Rato, C. Brazia, M. L. S. Gonçalves, Competition of Al3+ in complexation of humic matter with Pb2+: a comparative study with other ions. Environ. Sci. Technol. 1996, 30, 1970.
CrossRef | CAS |

[67]  C. Plaza, N. Senesi, A. Polo, G. Brunetti, Acid-base properties of humic and fulvic acids formed during composting. Environ. Sci. Technol. 2005, 39, 7141.
CrossRef | CAS | PubMed |

[68]  J. D. Ritchie, E. M. Perdue, Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta 2003, 67, 85.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014