Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE (Open Access)

Investigating the photo-oxidative and heterogeneous chemical production of HCHO in the snowpack at the South Pole, Antarctica

P. D. Hamer A B E , D. E. Shallcross A , A. Yabushita C , M. Kawasaki C , V. Marécal B and C. S. Boxe D
+ Author Affiliations
- Author Affiliations

A School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, UK.

B Centre National de Recherches Météorologiques-Groupe d’étude de l’Atmosphérè Météorologique, Météo-France and CNRS, UMR3589, F-31000 Toulouse, France.

C Department of Molecular Engineering, Kyoto University, Kyoto 615-8510, Japan.

D Department of Physical, Environmental and Computer Science, Medgar Evers College-City University of New York, 1650 Bedford Avenue, Brooklyn, NY 11235, USA.

E Corresponding author. Email: paul.d.hamer@gmail.com

Environmental Chemistry 11(4) 459-471 https://doi.org/10.1071/EN13227
Submitted: 17 December 2013  Accepted: 2 May 2014   Published: 12 August 2014

Journal Compilation © CSIRO Publishing 2014 Open Access CC BY-NC-ND

Environmental context. Snowpacks present a surprisingly active environment for photochemistry, leading to sunlight-induced oxidation of deposited organic matter and the subsequent emission of a variety of photochemically active trace gases. We seek to address questions regarding the ultimate fate of organic matter deposited onto snow in the remote regions of the world. The work is relevant to atmospheric composition and climate change.

Abstract. We investigate snowpack fluxes of formaldehyde (HCHO) into the South Pole boundary layer using steady-state photochemical models. We study two chemical sources of HCHO within the snowpack. First, we study chemical production of HCHO from the processing of methyl hydroperoxide (CH3OOH): photolysis, reaction with the hydroxyl radical (OH), and by an acid catalysed rearrangement. Assuming surface layer concentration effects for acidic solutes, we show that the acid catalysed production of HCHO within ice could contribute a non-negligible source to the snowpack HCHO budget. This novel source of HCHO complements existing explanations of HCHO fluxes based on physical emission of HCHO from snow. Secondly, we investigate HCHO production from the oxidation of organic matter (OM) by OH within snow to explain observed fluxes of photochemical origin from the South Pole snowpack. This work shows that laboratory-derived photochemical production rates of HCHO and our standard model are inconsistent with field observations, which has implications for the distribution of OM relative to oxidants within ice particles. We resolve this inconsistency using new laboratory measurements of the molecular dynamics of the OH photofragment from hydrogen peroxide (H2O2) and nitrate (NO3) photolysis, which show that only OH produced in the outermost monolayers can contribute to gas phase and surface layer chemistry. Using these new measurements in conjunction with realistic treatments of ice grain size, H2O2 and NO3 distribution within ice grains, diffusion of gas species within solid ice, and observed OM particle size distributions yields snowpack HCHO photochemical production rates more consistent with observations.

Additional keywords: hydrogen peroxide, hydroxyl radical, ice chemistry, methyl peroxide, organic matter.


References

[1]  D. D. Davis, J. B. Nowak, G. Chen, M. Buhr, R. Arimoto, A. Hogan, F. Eisele, L. Maudlin, A. Hogan, D. Tanner, R. Shetter, B. Lefer, P. McMurry, Unexpected high levels of NO observed at South Pole. Geophys. Res. Lett. 2001, 28, 3625.
Unexpected high levels of NO observed at South Pole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ykt70%3D&md5=3c813c4fb26291ca3afe62c4d3408247CAS |

[2]  J. H. Crawford, D. D. Davis, G. Chen, M. Buhr, S. Oltmans, R. Weller, L. Mauldin, F. Eisele, R. Shetter, B. Lefer, R. Arimoto, A. Hogan, Evidence for the photochemical production of ozone at the South Pole surface. Geophys. Res. Lett. 2001, 28, 3641.
Evidence for the photochemical production of ozone at the South Pole surface.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ykt7k%3D&md5=e023f1a44a795eb8b1c190dbc43d23d5CAS |

[3]  D. D. Davis, G. Chen, M. Buhr, J. Crawford, D. Lenschow, B. Lefer, R. Shetter, F. Eisele, L. Maudlin, A. Hogan, South Pole NOx chemistry: an assessment of factors controlling variability and absolute levels. Atmos. Environ. 2004, 38, 5375.
South Pole NOx chemistry: an assessment of factors controlling variability and absolute levels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVCqu7g%3D&md5=d50374097e85ede14b0fd338e0189c7dCAS |

[4]  J. E. Dibb, L. G. Huey, D. L. Slusher, D. J. Tanner, Soluble reactive nitrogen oxides at South Pole during ISCAT 2000. Atmos. Environ. 2004, 38, 5399.
Soluble reactive nitrogen oxides at South Pole during ISCAT 2000.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVCqu7Y%3D&md5=57f02b0f89ab7e3e12d62689425aba8aCAS |

[5]  L. G. Huey, D. J. Tanner, D. L. Slusher, J. E. Dibb, R. Arimoto, G. Chen, D. D. Davis, M. P. Buhr, J. B. Nowak, R. L. Mauldin, CIMS measurements of HNO3 and SO2 at the South Pole during ISCAT 2000. Atmos. Environ. 2004, 38, 5411.
CIMS measurements of HNO3 and SO2 at the South Pole during ISCAT 2000.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVCqu7c%3D&md5=17b67b5bb4c16613b0669c7030afa92fCAS |

[6]  R. L. Mauldin, F. L. Eisele, D. J. Tanner, E. Kosciuch, R. Shetter, B. Lefer, S. R. Hall, J. B. Nowak, M. Buhr, G. Chen, P. Wang, D. D. Davis, Measurements of OH, H2SO4, and MSA at the South Pole during ISCAT. Geophys. Res. Lett. 2001, 28, 3629.
Measurements of OH, H2SO4, and MSA at the South Pole during ISCAT.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ykt7o%3D&md5=316d36cc42002b61c92f9973f2003f5eCAS |

[7]  G. Chen, D. D. Davis, J. Crawford, J. B. Nowak, F. Eisele, R. L. Mauldin, D. Tanner, M. Buhr, R. Shetter, B. Lefer, R. Arimoto, A. Hogan, D. Blake, An investigation of South Pole HOx chemistry: comparison of model results with ISCAT observations. Geophys. Res. Lett. 2001, 28, 3633.
An investigation of South Pole HOx chemistry: comparison of model results with ISCAT observations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXns1ykt7s%3D&md5=03a8d275e0f1e60ca84c710866f24513CAS |

[8]  G. Chen, D. Davis, J. Crawford, L. M. Hutterli, L. G. Huey, D. Slusher, L. Maudlin, F. Eisele, D. Tanner, J. Dibb, A reassessment of HOx South Pole chemistry based on observations recorded during ISCAT 2000. Atmos. Environ. 2004, 38, 5451.
A reassessment of HOx South Pole chemistry based on observations recorded during ISCAT 2000.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGjsrw%3D&md5=756005dde095cff4b1ac6dff19a13c3eCAS |

[9]  P. D. Hamer, D. E. Shallcross, M. M. Frey, Modelling the impact of oxygenated VOC and meteorology upon the boundary layer photochemistry at the South Pole. Atmos. Sci. Lett. 2007, 8, 14.
Modelling the impact of oxygenated VOC and meteorology upon the boundary layer photochemistry at the South Pole.Crossref | GoogleScholarGoogle Scholar |

[10]  P. D. Hamer, A. Yabushita, M. Kawasaki, D. E. Shallcross, Modelling the impact of possible snowpack emissions of O(3P) and NO2 on photochemistry in the South Pole boundary layer. Environ. Chem. 2008, 5, 268.
Modelling the impact of possible snowpack emissions of O(3P) and NO2 on photochemistry in the South Pole boundary layer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWitLbM&md5=0274665642632bf239f1c05012b98536CAS |

[11]  A. E. Jones, R. Weller, E. W. Wolff, H. W. Jacobi, Speciation and rate of photochemical NO and NO2 production in Antarctic snow. Geophys. Res. Lett. 2000, 27, 345.
Speciation and rate of photochemical NO and NO2 production in Antarctic snow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtV2lurk%3D&md5=54fbd203bd3036e69d58d46ecda567d1CAS |

[12]  E. S. N. Cotter, A. E. Jones, E. W. Wolff, S. J. B. Bauguitte, What controls photochemical NO and NO2 production from snow? Laboratory investigation assessing the wavelength and temperature dependence. J. Geophys. Res. 2003, 108, 4147.
What controls photochemical NO and NO2 production from snow? Laboratory investigation assessing the wavelength and temperature dependence.Crossref | GoogleScholarGoogle Scholar |

[13]  A. Yabushita, D. Iida, T. Hama, M. Kawasaki, Release of oxygen atoms and nitric oxide molecules from the ultraviolet photodissociation of nitrate adsorbed on water ice films at 100 K. J. Phys. Chem. 2007, 111, 8629.
Release of oxygen atoms and nitric oxide molecules from the ultraviolet photodissociation of nitrate adsorbed on water ice films at 100 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptVejsrk%3D&md5=05d6a541475fb84dd1ea9c7b71011ec7CAS |

[14]  K. Riedel, R. Weller, O. Schrems, Variability of formaldehyde in the Antarctic troposphere. Phys. Chem. Chem. Phys. 1999, 1, 5523.
Variability of formaldehyde in the Antarctic troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1akug%3D%3D&md5=6cf790ff5daaaa5b103ccc8f8ef78df0CAS |

[15]  M. A. Hutterli, J. R. McConnell, G. Chen, R. C. Bales, D. D. Davis, D. H. Lenschow, Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole. Atmos. Environ. 2004, 38, 5439.
Formaldehyde and hydrogen peroxide in air, snow and interstitial air at South Pole.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVGjsr8%3D&md5=c0fbda57c9f361862db150957b4ba7ebCAS |

[16]  A. L. Sumner, P. B. Shepson, Snowpack production of formaldehyde and its effect on the Arctic troposphere. Nature 1999, 398, 230.
Snowpack production of formaldehyde and its effect on the Arctic troposphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVGksro%3D&md5=395897ce67c8efef44874b13b12c7590CAS |

[17]  A. M. Grannas, P. B. Shepson, T. R. Filley, Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global Biogeochem. Cycles 2004, 18, GB1006.
Photochemistry and nature of organic matter in Arctic and Antarctic snow.Crossref | GoogleScholarGoogle Scholar |

[18]  L. Chu, C. Anastasio, Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice. J. Phys. Chem. A 2003, 107, 9594.
Quantum yields of hydroxyl radical and nitrogen dioxide from the photolysis of nitrate on ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXot1Khs7c%3D&md5=bc2363536a71918f53c7b18feba0c456CAS |

[19]  J. Mack, J. R. Bolton, Photochemistry of nitrite and nitrate in aqueous solution: a review. J. Photochem. Photobiol. Chem. 1999, 128, 1.
Photochemistry of nitrite and nitrate in aqueous solution: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnvVyqsbY%3D&md5=ab60279617e349a620db5aaf70630e9cCAS |

[20]  G. Mark, H. G. Korth, H. P. Schuchmann, C. v. Sonntag, The photochemistry of aqueous nitrate ion revisited. J. Photochem. Photobiol. Chem. 1996, 101, 89.
The photochemistry of aqueous nitrate ion revisited.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXit1Kqurw%3D&md5=774502f94fecb8b691c6e48fd670b663CAS |

[21]  L. Chu, C. Anastasio, Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide. J. Phys. Chem. A 2005, 109, 6264.
Formation of hydroxyl radical from the photolysis of frozen hydrogen peroxide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlsF2ms7Y%3D&md5=f6bd352c74f3aa72be0b72a3c978181fCAS | 16833967PubMed |

[22]  J. L. France, M. D. King, J. Lee-Taylor, Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO3–). Atmos. Environ. 2007, 41, 5502.
Hydroxyl (OH) radical production rates in snowpacks from photolysis of hydrogen peroxide (H2O2) and nitrate (NO3).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXns1KqsL4%3D&md5=fdd5310cd0f9954f3a132d91af16ae4fCAS |

[23]  X. Zhou, K. Mopper, Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar. Chem. 1997, 56, 201.
Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhsFCmu7s%3D&md5=ebe9044c3365ad467656b4fcd4ab2c30CAS |

[24]  A. Yabushita, D. Lida, T. Hama, M. Kawasaki, Observation of OH radicals ejected from water ice surface in the photoirradiation of nitrate adsorbed on ice at 100 K. J. Phys. Chem. A 2008, 112, 9763.
Observation of OH radicals ejected from water ice surface in the photoirradiation of nitrate adsorbed on ice at 100 K.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVymtL%2FK&md5=28f93cd87e7cc3ec1ab23f6cde7ffcefCAS | 18778045PubMed |

[25]  T. Uchimaru, A. Chandra, S. Tsuzuki, M. Sugie, A. Sekiya, Ab initio investigation on the reaction path and rate for the gas-phase reaction of HO + H2O ↔ H2O + OH. J. Comput. Chem. 2003, 24, 1538.
Ab initio investigation on the reaction path and rate for the gas-phase reaction of HO + H2O ↔ H2O + OH.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntFent7w%3D&md5=45ed3bfbcc247f7e9f78cc7c600d7f7aCAS | 12925998PubMed |

[26]  S. Andersson, A. Al-Halabi, G.-J. Kroes, E. F. v. Dishoeck, Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices. J. Chem. Phys. 2006, 124, 064715.
Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices.Crossref | GoogleScholarGoogle Scholar |

[27]  P. Cooper, J. Abbatt, Heterogeneous interactions of OH and HO2 radicals with surfaces characteristic of atmospheric particulate matter. J. Phys. Chem. A 1996, 100, 2249.
Heterogeneous interactions of OH and HO2 radicals with surfaces characteristic of atmospheric particulate matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xks1OntQ%3D%3D&md5=a11b43d49f2fa69f07a66aa85a07ea8dCAS |

[28]  M. M. Frey, R. W. Stewart, J. R. McConnell, R. C. Bales, Atmospheric hydroperoxides in West Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity. J. Geophys. Res. – D. Atmospheres 2005, 110, D23301.
Atmospheric hydroperoxides in West Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity.Crossref | GoogleScholarGoogle Scholar |

[29]  K. Riedel, R. Weller, O. Schrems, G. Konig-Langlo, Variability of tropospheric hydroperoxides at a coastal surface site in Antarctica. Atmos. Environ. 2000, 34, 5225.
Variability of tropospheric hydroperoxides at a coastal surface site in Antarctica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVWlu78%3D&md5=2b4bad202c22d6c6bce79349cdaaee9cCAS |

[30]  V. A. Yablokov, The mechanisms of the rearrangements of peroxides. Russ. Chem. Rev. 1980, 49, 833.
The mechanisms of the rearrangements of peroxides.Crossref | GoogleScholarGoogle Scholar |

[31]  M. B. Smith, J. March, March’s Advanced Organic Chemistry 2001 (Wiley: Hoboken, NJ)

[32]  M. Legrand, P. Mayewski, Glaciochemistry of polar ice cores: a review. Rev. Geophys. 1997, 35, 219.
Glaciochemistry of polar ice cores: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXns1Slt7w%3D&md5=4497f33077f628f7a529c8d969481851CAS |

[33]  C. S. Boxe, A. Saiz-Lopez, Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL): implications for NOx release from the Arctic and coastal Antarctic snowpack. Atmos. Chem. Phys. 2008, 8, 4855.
Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL): implications for NOx release from the Arctic and coastal Antarctic snowpack.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlCnurrN&md5=1819688f4251410dda2b9ef0cd0c33c6CAS |

[34]  H. Fukazawa, K. Sugiyama, S. Mae, H. Narita, T. Hondoh, Acid ions at triple junction of Antarctic ice observed by Raman scattering. Geophys. Res. Lett. 1998, 25, 2845.
Acid ions at triple junction of Antarctic ice observed by Raman scattering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlsF2msb8%3D&md5=110e17dfd8b4dfa4bb910fd07a5ea580CAS |

[35]  R. Mulvaney, E. W. Wolff, K. Oates, Sulphuric acid at grain boundaries in Antarctic ice. Nature 1988, 331, 247.
Sulphuric acid at grain boundaries in Antarctic ice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXotFGltg%3D%3D&md5=5a82a507e7b1f280066562e51dc4254eCAS |

[36]  S. P. Oncley, M. Buhr, D. H. Lenschow, D. D. Davis, S. R. Semmer, Observations of summertime NO fluxes and boundary-layer height at the South Pole during ISCAT 2000 using scalar similarity. Atmos. Environ. 2004, 38, 5389.
Observations of summertime NO fluxes and boundary-layer height at the South Pole during ISCAT 2000 using scalar similarity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVCqu7k%3D&md5=2af8f38629e2a757371f44234d1a6f34CAS |

[37]  M. E. Jenkin, S. M. Saunders, M. J. Pilling, The tropospheric degradation of volatile organic compounds: a protocol for mechanism development. Atmos. Environ. 1997, 31, 81.
The tropospheric degradation of volatile organic compounds: a protocol for mechanism development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XntVOnt78%3D&md5=b7649e0a9b82efaeff8d90871fc5917fCAS |

[38]  J. L. France, M. D. King, M. M. Frey, J. Erbland, G. Picard, A. MacArthur, J. Savarino, Snow optical properties at Dome C, Antarctica – implications for snow emissions and snow chemistry of reactive nitrogen. Atmos. Chem. Phys. Discuss. 2011, 11, 11 959.
Snow optical properties at Dome C, Antarctica – implications for snow emissions and snow chemistry of reactive nitrogen.Crossref | GoogleScholarGoogle Scholar |

[39]  A. M. Grannas, A. E. Jones, J. Dibb, M. Ammann, C. Anastasio, H. J. Beine, M. Bergin, J. Bottenheim, C. S. Boxe, G. Carver, G. Chen, J. H. Crawford, F. Dominé, M. M. Frey, M. I. Guzmán, D. E. Heard, D. Helmig, M. R. Hoffmann, R. E. Honrath, L. G. Huey, M. Hutterli, H. W. Jacobi, P. Klán, B. Lefer, J. McConnell, J. Plane, R. Sander, J. Savarino, P. B. Shepson, W. R. Simpson, J. R. Sodeau, R. von Glasow, R. Weller, E. W. Wolff, T. Zhu, An overview of snow photochemistry: evidence, mechanism and impacts. Atmos. Chem. Phys. 2007, 7, 4329.
An overview of snow photochemistry: evidence, mechanism and impacts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlWiurbJ&md5=553bd763d13bdd229972dd3e09eeaa03CAS |

[40]  S. Andersson, E. F. v. Dishoeck, Photodesorption of water ice. A molecular dynamics study. Astron. Astrophys. 2008, 491, 907.
Photodesorption of water ice. A molecular dynamics study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFSltLs%3D&md5=fe1e86a751f4f6d3f5c3ff8956ca1106CAS |

[41]  M. A. Hutterli, J. R. McConnell, G. Chen, R. C. Bales, D. D. Davis, D. H. Lenschow, Atmosphere-to-snow-to-firn transfer studies of HCHO at Summit, Greenland. Geophys. Res. Lett. 1999, 26, 1691.
Atmosphere-to-snow-to-firn transfer studies of HCHO at Summit, Greenland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1Ggtr4%3D&md5=6f0d0755c718ec26777b70a8bcb873f3CAS |