CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(5)

Factors affecting arsenic and uranium removal with zero-valent iron: laboratory tests with Kanchan-type iron nail filter columns with different groundwaters

Christine B. Wenk A B , Ralf Kaegi A and Stephan J. Hug A C

A Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Duebendorf, Switzerland.
B Present address: Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100 Rehovot, Israel.
C Corresponding author. Email: stephan.hug@eawag.ch

Environmental Chemistry 11(5) 547-557 http://dx.doi.org/10.1071/EN14020
Submitted: 22 January 2014  Accepted: 25 May 2014   Published: 25 September 2014


 
PDF (848 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. Tens of millions of people worldwide depend on groundwater with naturally high arsenic concentrations for drinking and cooking. We studied simple filters built with locally available and inexpensive iron nails, which can oxidise and bind arsenic in forming iron oxides and rust layers. Filters containing iron are being successfully applied in several regions, but efficiencies depend on the type of groundwater, and sufficiently large iron surfaces and contact times with water are needed for good arsenic removal.

Abstract. Zero-valent iron (ZVI)-based filters are able to remove arsenic and other pollutants from drinking water, but their performance depends on the form of ZVI, filter design, water composition and operating conditions. Kanchan filters use an upper bucket with ZVI in the form of commercial iron nails, followed by a sand filter, to remove arsenic and pathogens. We evaluated factors that influence the removal of arsenic and uranium with laboratory columns containing iron nails with six different synthetic groundwaters with 500 μg L–1 AsIII, 50 μg L–1 U, 2 mg L–1 B, and with 0 and 2 mg L–1 P (added as o-phosphate), 0.25 and 2.5 mM Ca, 3.2 and 8.3 mM HCO3, at pH 7.0 and 8.4 over 30 days. During the first 10 days, As removal was 65–95 % and strongly depended on the water composition. As removal at pH 7.0 was better than at pH 8.4 and high P combined with low Ca decreased As removal. From 10–30 days, As removal decreased to 45–60 % with all columns. Phosphate, in combination with low Ca concentrations lowered As removal, but had a slightly positive effect in combination with high Ca concentrations. U removal was only 10–70 %, but showed similar trends. The drop in performance over time can be explained by decreasing release of iron to solution due to formation of layers of FeIII phases and calcite covering the iron surface. Mobile corrosion products contained ferrihydrite, Si-containing hydrous ferric oxides, and amorphous Fe–Si–P phases. Comparisons with another type of ZVI filter (SONO-filter) were used to evaluate filter design parameters. Higher ZVI surface areas and longer contact times should lead to satisfactory As removal with Kanchan-type filters.

Additional keywords: arsenic removal, Kanchan-filter.


References

[1]  L. Charlet, D. A. Polya, Arsenic in shallow, reducing groundwaters in southern Asia: an environmental health disaster. Elements 2006, 2, 91.
CrossRef |

[2]  M. Amini, K. C. Abbaspour, M. Berg, L. Winkel, S. J. Hug, E. Hoehn, H. Yang, C. A. Johnson, Statistical modeling of global geogenic arsenic contamination in groundwater. Environ. Sci. Technol. 2008, 42, 3669.
CrossRef | CAS | PubMed |

[3]  L. Winkel, M. Berg, M. Amini, S. J. Hug, C. A. Johnson, Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nat. Geosci. 2008, 1, 536.
CrossRef | CAS |

[4]  L. Rodriguez-Lado, G. Sun, M. Berg, Q. Zhang, H. Xue, Q. Zheng, C. A. Johnson, Groundwater arsenic contamination throughout China. Science 2013, 341, 866.
CrossRef | CAS | PubMed |

[5]  A. H. Smith, P. A. Lopipero, M. N. Bates, C. M. Steinmaus, Public health – arsenic epidemiology and drinking water standards. Science 2002, 296, 2145.
CrossRef | CAS | PubMed |

[6]  J. C. Ng, J. P. Wang, A. Shraim, A global health problem caused by arsenic from natural sources. Chemosphere 2003, 52, 1353.
CrossRef | CAS | PubMed |

[7]  A. Mukherjee, M. K. Sengupta, M. A. Hossain, S. Ahamed, B. Das, B. Nayak, D. Lodh, M. M. Rahman, D. Chakraborti, Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J. Health Popul. Nutr. 2006, 24, 142.
| PubMed |

[8]  S. Murcott, Arsenic Contamination in the World. An International Sourcebook 2012 (IWA Publishing: London).

[9]  M. F. Ahmed, S. Ahuja, M. Alauddin, S. J. Hug, J. R. Lloyd, A. Pfaff, T. Pichler, C. Saltikov, M. Stute, A. van Geen, Epidemiology – ensuring safe drinking water in Bangladesh. Science 2006, 314, 1687.
CrossRef | CAS | PubMed |

[10]  D. Mohan, C. U. Pittman, Arsenic removal from water/wastewater using adsorbents – a critical review. J. Hazard. Mater. 2007, 142, 1.
CrossRef | CAS | PubMed |

[11]  R. B. Johnston, S. Hanchett, M. H. Khan, The socio-economics of arsenic removal. Nat. Geosci. 2010, 3, 2.
CrossRef | CAS |

[12]  A. K. Sharma, J. C. Tjell, J. J. Sloth, P. E. Holm, Review of arsenic contamination, exposure through water and food and low cost mitigation options for rural areas. Appl. Geochem. 2014, 41, 11.
CrossRef | CAS |

[13]  P. Mondal, S. Bhowmick, D. Chatterjee, A. Figoli, B. Van der Bruggen, Remediation of inorganic arsenic in groundwater for safe water supply: a critical assessment of technological solutions. Chemosphere 2013, 92, 157.
CrossRef | CAS | PubMed |

[14]  J. Inauen, M. M. Hossain, R. B. Johnston, H. J. Mosler, Acceptance and use of eight arsenic-safe drinking water options in Bangladesh. PLoS ONE 2013, 8.

[15]  M. I. Litter, M. E. Morgada, J. Bundschuh, Possible treatments for arsenic removal in Latin American waters for human consumption. Environ. Pollut. 2010, 158, 1105.
CrossRef | CAS | PubMed |

[16]  M. Berg, S. Luzi, P. T. K. Trang, P. H. Viet, W. Giger, D. Stuben, Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ. Sci. Technol. 2006, 40, 5567.
CrossRef | CAS | PubMed |

[17]  R. Tobias, M. Berg, Sustainable use of arsenic-removing sand filters in Vietnam: psychological and social factors. Environ. Sci. Technol. 2011, 45, 3260.
CrossRef | CAS | PubMed |

[18]  S. J. Hug, O. X. Leupin, M. Berg, Bangladesh and Vietnam: different groundwater compositions require different approaches to arsenic mitigation. Environ. Sci. Technol. 2008, 42, 6318.
CrossRef | CAS | PubMed |

[19]  N. Melitas, M. Conklin, J. Farrell, Electrochemical study of arsenate and water reduction on iron media used for arsenic removal from potable water. Environ. Sci. Technol. 2002, 36, 3188.
CrossRef | CAS | PubMed |

[20]  O. X. Leupin, S. J. Hug, Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 2005, 39, 1729.
CrossRef | CAS | PubMed |

[21]  Z. Q. Cheng, A. Van Geen, R. Louis, N. Nikolaidis, R. Bailey, Removal of methylated arsenic in groundwater with iron filings. Environ. Sci. Technol. 2005, 39, 7662.
CrossRef | CAS |

[22]  N. P. Nikolaidis, Z. Q. Cheng, A. van Geen, Removal of arsenic from Bangladesh groundwater with zero-valent iron. ACS Symp. Ser. 2005, 915, 361.
CrossRef | CAS |

[23]  O. X. Leupin, S. J. Hug, A. B. M. Badruzzaman, Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ. Sci. Technol. 2005, 39, 8032.
CrossRef | CAS | PubMed |

[24]  M. A. Abedin, T. Katsumi, T. Inui, M. Kamon, Arsenic removal from contaminated groundwater by zero valent iron: a mechanistic and long-term performance study. Soil Found. 2011, 51, 369.
CrossRef |

[25]  A. R. Rahmani, H. R. Ghaffari, M. T. Samadi, A comparative study on arsenic(III) removal from aqueous solution using nano and micro sized zero-valent iron. Iran. J. Environ. Health Sci. Eng. 2011, 8, 175.
| CAS |

[26]  O. J. Flores, J. L. Nava, G. Carreno, E. Elorza, F. Martinez, Arsenic removal from groundwater by electrocoagulation in a pre-pilot-scale continuous filter press reactor. Chem. Eng. Sci. 2013, 97, 1.
CrossRef | CAS |

[27]  N. C. Choi, S. B. Kim, S. O. Kim, J. W. Lee, J. B. Park, Removal of arsenate and arsenite from aqueous solution by waste cast iron. J. Environ. Sci. 2012, 24, 589.
CrossRef | CAS |

[28]  L. Li, C. M. van Genuchten, S. E. A. Addy, J. J. Yao, N. Y. Gao, A. J. Gadgil, Modeling As(III) oxidation and removal with iron electrocoagulation in groundwater. Environ. Sci. Technol. 2012, 46, 12038.
CrossRef | CAS | PubMed |

[29]  C. M. van Genuchten, S. E. A. Addy, J. Pena, A. J. Gadgil, Removing arsenic from synthetic groundwater with iron electrocoagulation: An Fe and As K-Edge EXAFS study. Environ. Sci. Technol. 2012, 46, 986.
CrossRef | CAS | PubMed |

[30]  S. Amrose, A. Gadgil, V. Srinivasan, K. Kowolik, M. Muller, J. Huang, R. Kostecki, Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2013, 48, 1019.
CrossRef | CAS | PubMed |

[31]  C. Noubactep, E. Temgoua, M. A. Rahman, Designing iron-amended biosand filters for decentralized safe drinking water provision. Clean – Soil, Air, Water 2012, 40, 798.
CrossRef | CAS |

[32]  A. Hussam, A. K. M. Munir, A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2007, 42, 1869.
CrossRef | CAS | PubMed |

[33]  T. K. K. Ngai, R. R. Shrestha, B. Dangol, M. Maharjan, S. E. Murcott, Design for sustainable development – Household drinking water filter for arsenic and pathogen treatment in Nepal. J. Environ. Sci. Health – A. Tox. Hazard. Subst. Environ. Eng. 2007, 42, 1879.
CrossRef | CAS |

[34]  T. K. K. Ngai, S. Murcott, R. R. Shrestha, B. Dangol, M. Maharjan, Development and dissemination of KanchanTM arsenic filter in rural Nepal. Water, Sci. & Technol. 2006, 6, 137.

[35]  H. Chiew, M. L. Sampson, S. Huch, S. Ken, B. C. Bostick, Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended biosand filters. Environ. Sci. Technol. 2009, 43, 6295.
CrossRef | CAS | PubMed |

[36]  A. Neumann, R. Kaegi, A. Voegelin, A. Hussam, A. K. M. Munir, S. J. Hug, Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environ. Sci. Technol. 2013, 47, 4544.
CrossRef | CAS | PubMed |

[37]  M. Shafiquzzaman, M. S. Azam, I. Mishima, J. Nakajima, Technical and social evaluation of arsenic mitigation in rural Bangladesh. J. Health Popul. Nutr. 2009, 27, 674.
CrossRef | PubMed |

[38]  L. C. Roberts, S. J. Hug, T. Ruettimann, M. Billah, A. W. Khan, M. T. Rahman, Arsenic removal with iron(II) and iron(III) waters with high silicate and phosphate concentrations. Environ. Sci. Technol. 2004, 38, 307.
CrossRef | CAS | PubMed |

[39]  I. A. Katsoyiannis, S. J. Hug, A. Ammann, A. Zikoudi, C. Hatziliontos, Arsenic speciation and uranium concentrations in drinking water supply wells in northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Sci. Total Environ. 2007, 383, 128.
CrossRef | CAS | PubMed |

[40]  I. A. Katsoyiannis, A. Zikoudi, S. J. Hug, Arsenic removal from groundwaters containing iron, ammonium, manganese and phosphate: a case study from a treatment unit in northern Greece. Desalination 2008, 224, 330.
CrossRef | CAS |

[41]  J. Bundschuh, M. I. Litter, F. Parvez, G. Roman-Ross, H. B. Nicolli, J.-S. Jean, C.-W. Liu, D. Lopez, M. A. Armienta, L. R. G. Guilherme, A. Gomez Cuevas, L. Cornejo, L. Cumbal, R. Toujaguez, One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2.
CrossRef | CAS | PubMed |

[42]  S. J. Hug, D. Gaertner, L. C. Roberts, M. Schirmer, T. Ruettimann, T. M. Rosenberg, A. B. M. Badruzzaman, M. A. Ali, Avoiding high concentrations of arsenic, manganese and salinity in deep tubewells in Munshiganj District, Bangladesh. Appl. Geochem. 2011, 26, 1077.
CrossRef | CAS |

[43]  G. A. Wasserman, X. H. Liu, F. Parvez, H. Ahsan, D. Levy, P. Factor-Litvak, J. Kline, A. van Geen, V. Slavkovich, N. J. Lolacono, Z. Q. Cheng, Y. Zheng, J. H. Graziano, Water manganese exposure and children's intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 2006, 114, 124.
| CAS | PubMed |

[44]  W. Stumm, G. F. Lee, Oxygenation of ferrous iron. Ind. Eng. Chem. 1961, 53, 143.
CrossRef | CAS |

[45]  A. Voegelin, R. Kaegi, J. Frommer, D. Vantelon, S. J. Hug, Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. Geochim. Cosmochim. Acta 2010, 74, 164.
CrossRef | CAS |

[46]  R. Kaegi, A. Voegelin, D. Folini, S. J. Hug, Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water. Geochim. Cosmochim. Acta 2010, 74, 5798.
CrossRef | CAS |

[47]  A. Voegelin, A.-C. Senn, R. Kaegi, S. J. Hug, S. Mangold, Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water. Geochim. Cosmochim. Acta 2013, 117, 216.
CrossRef | CAS |

[48]  S. J. Hug, O. Leupin, Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ. Sci. Technol. 2003, 37, 2734.
CrossRef | CAS | PubMed |

[49]  H. Lee, H. J. Lee, D. L. Sedlak, C. Lee, pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere 2013, 92, 652.
CrossRef | CAS | PubMed |

[50]  H. Bataineh, O. Pestovsky, A. Bakac, pH-induced mechanistic changeover from hydroxyl radicals to iron(IV) in the Fenton reaction. Chem. Sci 2012, 3, 1594.
CrossRef | CAS |

[51]  S. H. Joo, A. J. Feitz, D. L. Sedlak, T. D. Waite, Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ. Sci. Technol. 2005, 39, 1263.
CrossRef | CAS | PubMed |

[52]  C. R. Keenan, D. L. Sedlak, Factors affecting the yield of oxidants from the reaction of nanonarticulate zero-valent iron and oxygen. Environ. Sci. Technol. 2008, 42, 1262.
CrossRef | CAS | PubMed |

[53]  H. Lee, H.-J. Lee, H.-E. Kim, J. Kweon, B.-D. Lee, C. Lee, Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study. J. Hazard. Mater. 2014, 265, 201.
CrossRef | CAS | PubMed |

[54]  I. A. Katsoyiannis, T. Ruettimann, S. J. Hug, pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environ. Sci. Technol. 2008, 42, 7424.
CrossRef | CAS | PubMed |

[55]  K. Amstaetter, T. Borch, P. Larese-Casanova, A. Kappler, Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ. Sci. Technol. 2010, 44, 102.
CrossRef | CAS | PubMed |

[56]  J. M. Santana-Casiano, A. Gonzalez-Davila, F. J. Millero, The role of Fe(II) species on the oxidation of Fe(II) in natural waters in the presence of O2 and H2O2. Mar. Chem. 2006, 99, 70.
CrossRef | CAS |

[57]  H. Tamura, S. Kawamura, M. Hagayama, Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides. Corros. Sci. 1980, 20, 963.
CrossRef | CAS |

[58]  X. G. Meng, S. Bang, G. P. Korfiatis, Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride. Water Res. 2000, 34, 1255.
CrossRef | CAS |

[59]  X. G. Meng, G. P. Korfiatis, S. B. Bang, K. W. Bang, Combined effects of anions on arsenic removal by iron hydroxides. Toxicol. Lett. 2002, 133, 103.
CrossRef | CAS |

[60]  D. Uy, T. Ngai, T. Mahin, C. Samnang, M. Saray, M. Adam, D. Baker, Kanchan arsenic filter: evaluation and applicability to Cambodia (Conference Paper), in Proceedings of the 34th WEDC International Conference, 18–22 May 2009, Addis Ababa, Ethiopia 2009, paper 129. Available at http://wedc.lboro.ac.uk/resources/conference/34/Uy_D_-_129.pdf [Verified 6 August 2014].

[61]  I. A. Katsoyiannis, A. I. Zouboulis, Removal of uranium from contaminated drinking water: a mini review of available treatment methods. Desalin. Water Treat. 2013, 51, 2915.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014