CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(3)

Toxicity of cerium oxide nanoparticles to the earthworm Eisenia fetida: subtle effects

Elma Lahive A D , Kerstin Jurkschat B , Benjamin J. Shaw C , Richard D. Handy C , David J. Spurgeon A and Claus Svendsen A

A NERC Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK.
B Department of Materials, Oxford University, Begbroke Science Park, Sandy Lane, Yarnton, Oxford, OX5 1PF, UK.
C Ecotoxicology Research and Innovation Centre, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
D Corresponding author. Email: elmhiv@ceh.ac.uk

Environmental Chemistry 11(3) 268-278 http://dx.doi.org/10.1071/EN14028
Submitted: 4 February 2014  Accepted: 16 April 2014   Published: 24 June 2014


 
PDF (830 KB) $25
 Export Citation
 Print
  

Environmental context. This study investigates the toxicity of cerium oxide nanoparticles to earthworms, key organisms in soil ecosystems. Cerium oxide did not affect survival or reproduction of the earthworms but did exert histological changes. We conclude that current soil guidelines, based simply on metal toxicity, appear to adequately protect against cerium exposure risk, at least for earthworms.

Abstract. The toxicity of cerium oxide (CeO2) nanoparticles (NPs) in soils is largely unknown. This study aimed to investigate the toxicity of three different CeO2 NPs to the earthworm, Eisenia fetida, for effects on survival (at day 28) and reproduction (at day 56), as well as bioaccumulation and histopathological effects. Eisenia fetida were exposed in standard Lufa 2.2 soil to three CeO2 NPs of different size ranges (5–80 nm), one larger particle (300 nm) and a cerium salt (ammonium cerium nitrate) over an exposure range from 41–10 000 mg Ce kg–1. Survival and reproduction were not affected by the four CeO2 particles, even at the highest exposure concentration tested. Alternatively, 10 000 mg Ce kg–1 cerium salt affected survival and reproduction; Median lethal concentration (LC50) and effective concentration (EC50) values were 317.8 and 294.6 mg Ce kg–1. Despite a lack of toxic effect from the different forms of CeO2 particles, there was a dose-dependent increase in cerium in the organisms at all exposure concentrations, and for all material types. Earthworms exposed to CeO2 particles had higher concentrations of total cerium compared to those exposed to ionic cerium, but without exhibiting the same toxic effect. Histological observations in earthworms exposed to the particulate forms of CeO2 did, however, show cuticle loss from the body wall and some loss of gut epithelium integrity. The data suggest that that CeO2 NPs do not affect survival or reproduction in E. fetida over the standard test period. However, there were histological changes that could indicate possible deleterious effects over longer-term exposures.

Additional keyword: histopathology.


References

[1]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
CrossRef | CAS | PubMed |

[2]  B. Nowack, J. F. Ranville, S. Diamond, J. A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A. A. Koelmans, S. J. Klaine, Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 2012, 31, 50.
CrossRef | CAS | PubMed |

[3]  A. Baun, N. Hartmann, K. Grieger, K. O. Kusk, Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 2008, 17, 387.
CrossRef | CAS | PubMed |

[4]  R. D. Handy, R. Owen, E. Valsami-Jones, The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 2008, 17, 315.
CrossRef | CAS | PubMed |

[5]  R. D. Handy, G. Cornelis, T. F. Fernandes, O. Tsyusko, A. Decho, T. Sabo-Attwood, C. Metcalfe, J. Steevens, S. J. Klaine, A. A. Koelmans, N. Horne, Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ. Toxicol. Chem. 2012, 31, 15.
CrossRef | CAS | PubMed |

[6]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
CrossRef | CAS | PubMed |

[7]  S. J. Klaine, A. A. Koelmans, N. Horne, S. Carley, R. D. Handy, L. Kapustka, B. Nowack, F. von der Kammer, Paradigms to assess the environmental impact of manufactured nanomaterials. Environ. Toxicol. Chem. 2012, 31, 3.
CrossRef | CAS | PubMed |

[8]  P. S. Tourinho, C. A. van Gestel, S. Lofts, C. Svendsen, A. M. Soares, S. Loureiro, Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ. Toxicol. Chem. 2012, 31, 1679.
CrossRef | CAS | PubMed |

[9]  G. Cornelis, B. Ryan, M. J. McLaughlin, J. K. Kirby, D. Beak, D. Chittleborough, Solubility and batch retention of CeO2 nanoparticles in soils. Environ. Sci. Technol. 2011, 45, 2777.
CrossRef | CAS | PubMed |

[10]  F. Gómez-Rivera, J. A. Field, D. Brown, R. Sierra-Alvarez, Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment. Bioresour. Technol. 2012, 108, 300.
CrossRef | PubMed |

[11]  S.-W. Lee, S.-M. Kim, J. Choi, Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ. Toxicol. Pharmacol. 2009, 28, 86.
CrossRef | CAS | PubMed |

[12]  B. K. Gaiser, A. Biswas, P. Rosenkranz, M. A. Jepson, J. R. Lead, V. Stone, C. R. Tyler, T. F. Fernandes, Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J. Environ. Monit. 2011, 13, 1227.
CrossRef | CAS | PubMed |

[13]  N. Manier, A. Bado-Nilles, P. Delalain, O. Aguerre-Chariol, P. Pandard, Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ. Pollut. 2013, 180, 63.
CrossRef | CAS | PubMed |

[14]  I. Rodea-Palomares, K. Boltes, F. Fernández-Piñas, F. Leganés, E. García-Calvo, J. Santiago, R. Rosal, Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms. Toxicol. Sci. 2011, 119, 135.
CrossRef | CAS | PubMed |

[15]  I. Rodea-Palomares, S. Gonzalo, J. Santiago-Morales, F. Leganés, E. García-Calvo, R. Rosal, F. Fernández-Piñas, An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat. Toxicol. 2012, 122–123, 133.
CrossRef | PubMed |

[16]  E. Artells, J. Issartel, M. Auffan, D. Borschneck, A. Thill, M. Tella, L. Brousset, J. Rose, J. Bottero, A. Thiéry, Exposure to cerium dioxide nanoparticles differently affect swimming performance and survival in two daphnid species. PLoS ONE 2013, 8, e71260.
CrossRef | CAS | PubMed |

[17]  K. Birbaum, R. Brogioli, M. Schellenberg, E. Martinoia, W. J. Stark, D. Gonther, L. K. Limbach, No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ. Sci. Technol. 2010, 44, 8718.
CrossRef | CAS | PubMed |

[18]  F. Schwabe, R. Schulin, L. K. Limbach, W. Stark, D. Bürge, B. Nowack, Influence of two types of organic matter on interaction of CeO2 nanoparticles with plants in hydroponic culture. Chemosphere 2013, 91, 512.
CrossRef | CAS | PubMed |

[19]  M. L. López-Moreno, G. de la Rosa, J. A. Hernández-Viezcas, H. Castillo-Michel, C. E. Botez, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ. Sci. Technol. 2010, 44, 7315.
CrossRef | PubMed |

[20]  L. Vittori Antisari, S. Carbone, A. Gatti, G. Vianello, P. Nannipieri, Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biol. Biochem. 2013, 60, 87.
CrossRef | CAS |

[21]  A. García, L. Delgado, J. A. Torà, E. Casals, E. González, V. Puntes, X. Font, J. Carrera, A. Sánchez, Effect of cerium dioxide, titanium dioxide, silver, and gold nanoparticles on the activity of microbial communities intended in wastewater treatment. J. Hazard. Mater. 2012, 199–200, 64.
CrossRef | PubMed |

[22]  D. A. Pelletier, A. K. Suresh, G. A. Holton, C. K. McKeown, W. Wang, B. Gu, N. P. Mortensen, D. P. Allison, D. C. Joy, M. R. Allison, S. D. Brown, T. J. Phelps, M. J. Doktycz, Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl. Environ. Microbiol. 2010, 76, 7981.
CrossRef | CAS | PubMed |

[23]  J.-Y. Roh, Y.-K. Park, K. Park, J. Choi, Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ. Toxicol. Pharmacol. 2010, 29, 167.
CrossRef | CAS | PubMed |

[24]  B. Collin, E. Oostveen, O. Tsyusko, J. M. Unrine, Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ. Sci. Technol. 2014, 48, 1280.
CrossRef | CAS | PubMed |

[25]  H. Zhang, X. He, Z. Zhang, P. Zhang, Y. Li, Y. Ma, Y. Kuang, Y. Zhao, Z. Chai, Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ. Sci. Technol. 2011, 45, 3725.
CrossRef | CAS | PubMed |

[26]  M. Auffan, D. Bertin, P. Chaurand, C. Pailles, C. Dominici, J. Rose, J. Y. Bottero, A. Thiery, Role of molting on the biodistribution of CeO2 nanoparticles within Daphnia pulex. Water Res. 2013, 47, 3921.
CrossRef | CAS | PubMed |

[27]  W. A. Shoults-Wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. V. Lowry, J. M. Unrine, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 365.
CrossRef | CAS |

[28]  O. Choi, Z. Hu, Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42, 4583.
CrossRef | CAS | PubMed |

[29]  J. M. Unrine, O. V. Tsyusko, S. E. Hunyadi, J. D. Judy, P. M. Bertsch, Effects of particle size on chemical speciation and bioavailability of copper to earthworms exposed to copper nanoparticles. J. Environ. Qual. 2010, 39, 1942.
CrossRef | CAS | PubMed |

[30]  L. R. Heggelund, M. Diez-Ortiz, S. Lofts, E. Lahive, K. Jurkschat, J. Wojnarowicz, N. Cedergreen, D. Spurgeon, C. Svendsen, Soil pH effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 2014, 8, 559.
CrossRef | CAS | PubMed |

[31]  C. A. Edwards, P. J. Bohlen, Biology and Ecology of Earthworms, 3rd edn 1996 (Chapman & Hall: London).

[32]  P. Lavelle, T. Decaëns, M. Aubert, S. Barot, M. Blouin, F. Bureau, P. Margerie, P. Mora, J. P. Rossi, Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 2006, 42, S3.
CrossRef |

[33]  Test number 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia andrei) OECD Guidelines for the Testing of Chemicals, Section 2 2004 (Organization for Economic Cooperation and Development: Paris).

[34]  S. J. Traina, V. Laperche, Contaminant bioavailability in soils, sediments, and aquatic environments. Proc. Natl. Acad. Sci. USA 1999, 96, 3365.
CrossRef | CAS | PubMed |

[35]  C. E. Smit, C. A. van Gestel, Effects of soil type, prepercolation, and ageing on bioaccumulation and toxicity of zinc for the springtail Folsomia candida. Environ. Toxicol. Chem. 1998, 17, 1132.
CrossRef | CAS |

[36]  T. Speir, H. Kettles, H. Percival, A. Parshotam, Is soil acidification the cause of biochemical responses when soils are amended with heavy metal salts? Soil Biol. Biochem. 1999, 31, 1953.
CrossRef | CAS |

[37]  E. Smolders, J. Buekers, I. Oliver, M. J. McLaughlin, Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ. Toxicol. Chem. 2004, 23, 2633.
CrossRef | CAS | PubMed |

[38]  B. J. Shaw, C. S. Ramsden, A. Turner, R. D. Handy, A simplified method for determining titanium from TiO2 nanoparticles in fish tissue with a concomitant multi-element analysis. Chemosphere 2013, 92, 1136.
CrossRef | CAS | PubMed |

[39]  L. Zhao, Y. Sun, J. A. Hernandez-Viezcas, A. D. Servin, J. Hong, G. Niu, J. R. Peralta-Videa, M. Duarte-Gardea, J. L. Gardea-Torresdey, Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J. Agric. Food Chem. 2013, 61, 11945.
CrossRef | CAS | PubMed |

[40]  H. L. Hooper, K. Jurkschat, A. J. Morgan, J. Bailey, A. J. Lawlor, D. J. Spurgeon, C. Svendsen, Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ. Int. 2011, 37, 1111.
CrossRef | CAS | PubMed |

[41]  G. Oberdörster, E. Oberdörster, J. Oberdörster, Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823.
CrossRef | PubMed |

[42]  J. G. Coleman, D. R. Johnson, J. K. Stanley, A. J. Bednar, C. A. Weiss, R. E. Boyd, J. A. Steevens, Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida. Environ. Toxicol. Chem. 2010, 29, 1575.
CrossRef | CAS | PubMed |

[43]  D. Spurgeon, S. Hopkin, The development of genetically inherited resistance to zinc in laboratory-selected generations of the earthworm Eisenia fetida. Environ. Pollut. 2000, 109, 193.
CrossRef | CAS | PubMed |

[44]  R. Hughes, J. Nair, G. Ho, The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process. Water Sci. Technol. 2008, 58, 1215.
CrossRef | CAS | PubMed |

[45]  D. Spurgeon, S. Hopkin, Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia 1996, 40, 80.
| CAS |

[46]  X. Cao, Y. Chen, X. Wang, X. Deng, Effects of redox potential and pH value on the release of rare earth elements from soil. Chemosphere 2001, 44, 655.
CrossRef | CAS | PubMed |

[47]  P. R. Paquin, J. W. Gorsuch, S. Apte, G. E. Batley, K. C. Bowles, P. G. C. Campbell, C. G. Delos, D. M. Di Toro, R. L. Dwyer, F. Galvez, R. W. Gensemer, G. G. Goss, C. Hogstrand, C. R. Janssen, J. C. McGeer, R. B. Naddy, R. C. Playle, R. C. Santore, U. Schneider, W. A. Stubblefield, C. M. Wood, K. B. Wu, The biotic ligand model: a historical overview. Comp. Biochem. Physiol. Part Toxicol. Pharmacol. 2002, 133, 3.
CrossRef |

[48]  X. Hu, Z. Ding, Y. Chen, X. Wang, L. Dai, Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings. Chemosphere 2002, 48, 621.
CrossRef | CAS | PubMed |

[49]  B. D. Johnston, T. M. Scown, J. Moger, S. A. Cumberland, M. Baalousha, K. Linge, R. van Aerle, K. Jarvis, J. R. Lead, C. R. Tyler, Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ. Sci. Technol. 2010, 44, 1144.
CrossRef | CAS | PubMed |

[50]  C. van Gestel, E. Dirven-van Breemen, R. Baerselman, Accumulation and elimination of cadmium, chromium and zinc and effects on growth and reproduction in Eisenia andrei (Oligochaeta, Annelida). Sci. Total Environ. 1993, 134, 585.
CrossRef |

[51]  P. L. Kool, M. D. Ortiz, C. A. M. van Gestel, Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ. Pollut. 2011, 159, 2713.
CrossRef | CAS | PubMed |

[52]  M. J. Van Der Ploeg, R. D. Handy, L.-H. Heckmann, A. Van Der Hout, N. W. Van Den Brink, C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus. Nanotoxicology 2013, 7, 432.
CrossRef | CAS | PubMed |

[53]  M. J. van der Ploeg, R. D. Handy, P. L. Waalewijn-Kool, J. H. van den Berg, Z. E. Herrera Rivera, J. Bovenschen, B. Molleman, J. M. Baveco, P. Tromp, R. J. Peters, G. F. Koopmans, I. M. Rietjens, N. W. van den Brink, Effects of silver nanoparticles (NM-300 K) on Lumbricus rubellus earthworms and particle characterisation in relevant test matrices, including soil. Environ. Toxicol. Chem. 2014, 33, 743.
CrossRef | CAS | PubMed |

[54]  A. C. Johnson, B. Park, Predicting contamination by the fuel additive cerium oxide engineered nanoparticles within the United Kingdom and the associated risks. Environ. Toxicol. Chem. 2012, 31, 2582.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014