CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(4)

Current status and future direction for examining engineered nanoparticles in natural systems

Manuel D. Montaño A F , Gregory V. Lowry B C , Frank von der Kammer D , Julie Blue E and James F. Ranville A

A Colorado School of Mines, Department of Chemistry and Geochemistry, 1012 14th Street, Golden, CO 80401, USA.
B Carnegie Mellon University, Department of Civil and Environmental Engineering, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
C Center for Environmental Implications of Nanotechnology, 1201 Hamburg Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.
D University of Vienna, Department of Environmental Geosciences, Althanstrasse 14 UZAII, A-1090 Vienna, Austria.
E The Cadmus Group, Inc., 100 Fifth Avenue, Suite 100, Waltham, MA 02451-8727, USA.
F Corresponding author. Email: jranvill@mines.edu

Environmental Chemistry 11(4) 351-366 http://dx.doi.org/10.1071/EN14037
Submitted: 19 February 2014  Accepted: 7 May 2014   Published: 28 July 2014


 
 Full Text
 PDF (1.7 MB)
 Export Citation
 Print
  

Environmental context. The detection and characterisation of engineered nanomaterials in the environment is essential for exposure and risk assessment for this emerging class of materials. However, the ubiquitous presence of naturally occurring nanomaterials presents a unique challenge for the accurate determination of engineered nanomaterials in environmental matrices. New techniques and methodologies are being developed to overcome some of these issues by taking advantage of subtle differences in the elemental and isotopic ratios within these nanomaterials.

Abstract. The increasing manufacture and implementation of engineered nanomaterials (ENMs) will continue to lead to the release of these materials into the environment. Reliably assessing the environmental exposure risk of ENMs will depend highly on the ability to quantify and characterise these materials in environmental samples. However, performing these measurements is obstructed by the complexity of environmental sample matrices, physiochemical processes altering the state of the ENM and the high background of naturally occurring nanoparticles (NNPs), which may be similar in size, shape and composition to their engineered analogues. Current analytical techniques can be implemented to overcome some of these obstacles, but the ubiquity of NNPs presents a unique challenge requiring the exploitation of properties that discriminate engineered and natural nanomaterials. To this end, new techniques are being developed that take advantage of the nature of ENMs to discern them from naturally occurring analogues. This paper reviews the current techniques utilised in the detection and characterisation of ENMs in environmental samples as well as discusses promising new approaches to overcome the high backgrounds of NNPs. Despite their occurrence in the atmosphere and soil, this review will be limited to a discussion of aqueous-based samples containing ENMs, as this environment will serve as a principal medium for the environmental dispersion of ENMs.



References

[1]  M. C. Roco, C. A. Mirkin, M. C. Hersam, Nanotechnology research directions for societal needs in 2020: summary of international study. J. Nanopart. Res. 2011, 13, 897.
CrossRef |

[2]  M. E. Leitch, E. Casman, G. V. Lowry, Nanotechnology patenting trends through an environmental lens: analysis of materials and applications. J. Nanopart. Res. 2012, 14, 1283.
CrossRef |

[3]  A. Nel, T. Xia, L. Mädler, N. Li, Toxic potential of materials at the nanolevel. Science 2006, 311, 622.
CrossRef | CAS | PubMed |

[4]  A. Nel, T. Xia, H. Meng, X. Wang, S. Lin, Z. Ji, H. Zhang, Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc. Chem. Res. 2013, 46, 607. [Published online early 7 June 2012]
| CAS | PubMed |

[5]  P. Westerhoff, B. Nowack, Searching for global descriptors of engineered nanomaterial fate and transport in the environment. Acc. Chem. Res. 2013, 46, 844. [Published online early 5 September 2012]
CrossRef | CAS | PubMed |

[6]  M. R. Wiesner, J.-Y. Bottero, Environmental nanotechnology, in Applications and Impacts of Nanomaterials 2007, pp. 395–517 (McGraw Hill: New York).

[7]  G. V. Lowry, K. B. Gregory, S. C. Apte, J. R. Lead, Transformations of nanomaterials in the environment. Environ. Sci. Technol. 2012, 46, 6893.
CrossRef | CAS | PubMed |

[8]  C. Levard, E. M. Hotze, B. P. Colman, A. L. Dale, L. Truong, X. Y. Yang, A. J. Bone, G. E. Brown, R. L. Tanguay, R. T. Di Giulio, E. S. Bernhardt, J. N. Meyer, M. R. Wiesner, G. V. Lowry, Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ. Sci. Technol. 2013, 47, 13 440.
CrossRef | CAS |

[9]  Committee to Develop a Research Strategy for Environmental, Health, and Safety Aspects of Engineered Nanomaterials, A research strategy for environmental, health, and safety aspects of engineered nanomaterials 2012 (National Academies Press for the National Research Council).

[10]  A. Pérez-de-Luque, D. Rubiales, Nanotechnology for parasitic plant control. Pest Manag. Sci. 2009, 65, 540.
CrossRef | PubMed |

[11]  M. R. Wiesner, G. V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas, Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 2006, 40, 4336.
CrossRef | CAS | PubMed |

[12]  M. Kah, T. Hofmann, Nanopesticide research: current trends and future priorities. Environ. Int. 2014, 63, 224.
CrossRef | CAS | PubMed |

[13]  S. J. Klaine, P. J. J. Alvarez, G. E. Batley, T. F. Fernandes, R. D. Handy, D. Y. Lyon, S. Mahendra, M. J. McLaughlin, J. R. Lead, Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825.
CrossRef | CAS | PubMed |

[14]  B. Nowack, T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 2007, 150, 5.
CrossRef | CAS | PubMed |

[15]  M. N. Moore, Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Int. 2006, 32, 967.
CrossRef | CAS | PubMed |

[16]  M. F. Hochella, Nanogeoscience: from origins to cutting-edge applications. Elements 2008, 4, 373.
CrossRef | CAS |

[17]  M. F. Hochella, S. K. Lower, P. A. Maurice, R. L. Penn, N. Sahai, D. L. Sparks, B. S. Twining, Nanominerals, mineral nanoparticles, and earth systems. Science 2008, 319, 1631.
CrossRef | CAS | PubMed |

[18]  B. J. Majestic, G. B. Erdakos, M. Lewandowski, K. D. Oliver, R. D. Willis, T. E. Kleindienst, P. V. Bhave, A review of selected engineered nanoparticles in the atmosphere: sources, transformations, and techniques for sampling and analysis. Int. J. Occup. Environ. Health 2010, 16, 488.
CrossRef | CAS | PubMed |

[19]  M. Auffan, J. Rose, J. Bottero, G. Lowry, J. Jolivet, M. Wiesner, Towards a definition of nanoparticles based on novel size-dependent properties. Nat. Nanotechnol. 2009, 4, 634.
CrossRef | CAS | PubMed |

[20]  E. Roduner, Size matters: why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583.
CrossRef | CAS | PubMed |

[21]  J.-W. Luo, P. Stradins, A. Zunger, Matrix-embedded silicon quantum dots for photovoltaic applications: a theoretical study of critical factors. Energy Env. Sci. 2011, 4, 2546.
CrossRef | CAS |

[22]  T. M. Benn, P. Westerhoff, Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 2008, 42, 4133.
CrossRef | CAS | PubMed |

[23]  S. A. Blaser, M. Scheringer, M. MacLeod, K. Hungerbühler, Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci. Total Environ. 2008, 390, 396.
CrossRef | CAS | PubMed |

[24]  C. N. Lok, C. M. Ho, R. Chen, Q. Y. He, W. Y. Yu, H. Sun, P. K. H. Tam, J. F. Chiu, C. M. Che, Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527.
CrossRef | CAS | PubMed |

[25]  H. R. Jafry, M. V. Liga, Q. Li, A. R. Barron, Simple route to enhanced photocatalytic activity of p25 titanium dioxide nanoparticles by silica addition. Environ. Sci. Technol. 2011, 45, 1563. [Published online early 31 December 2010]
CrossRef | CAS | PubMed |

[26]  E. Lombi, E. Donner, E. Tavakkoli, T. W. Turney, R. Naidu, B. W. Miller, K. G. Scheckel, K. Vasilev, Fate of zinc oxide nanoparticles during anaerobic digestion of wastewater and post-treatment processing of sewage sludge. Environ. Sci. Technol. 2012, 46, 9089.
CrossRef | CAS | PubMed |

[27]  S. E. Cross, B. Innes, M. S. Roberts, T. Tsuzuki, T. A. Robertson, P. McCormick, Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol. Physiol. 2007, 20, 148.
CrossRef | CAS | PubMed |

[28]  M. J. Osmond, M. J. Mccall, Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard. Nanotoxicology 2010, 4, 15.
CrossRef | CAS | PubMed |

[29]  B. Park, K. Donaldson, R. Duffin, L. Tran, F. Kelly, I. Mudway, J.-P. Morin, R. Guest, P. Jenkinson, Z. Samaras, Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive – a case study. Inhal. Toxicol. 2008, 20, 547.
CrossRef | CAS | PubMed |

[30]  V. Sajith, C. Sobhan, G. Peterson, Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv. Mech. Eng. 2010, 2010, 581407.
CrossRef |

[31]  P. V. Kamat, Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 2008, 112, 18 737.
CrossRef | CAS |

[32]  I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128, 2385.
CrossRef | CAS | PubMed |

[33]  X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538.
CrossRef | CAS | PubMed |

[34]  J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon, Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 2002, 21, 47.
CrossRef | PubMed |

[35]  I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435.
CrossRef | CAS | PubMed |

[36]  R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Carbon nanotubes – the route toward applications. Science 2002, 297, 787.
CrossRef | CAS | PubMed |

[37]  P. W. Blom, V. D. Mihailetchi, L. J. A. Koster, D. E. Markov, Device physics of polymer: fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551.
CrossRef | CAS |

[38]  B. C. Thompson, J. M. Fréchet, Polymer–fullerene composite solar cells. Angew. Chem. Int. Ed. 2008, 47, 58.
CrossRef | CAS |

[39]  A. K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995.
CrossRef | CAS | PubMed |

[40]  A. R. Petosa, D. P. Jaisi, I. R. Quevedo, M. Elimelech, N. Tufenkji, Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ. Sci. Technol. 2010, 44, 6532.
CrossRef | CAS | PubMed |

[41]  J. Buffle, H. P. van Leeuwin, Foreword, in Environmental Particles, vol. 1 (Ed. J. Buffle, H. P. van Leeuwin) 1993 (Lewis Publishers: Chelsea, MI, USA).

[42]  F. Gottschalk, T. Sonderer, R. W. Scholz, B. Nowack, Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ. Sci. Technol. 2009, 43, 9216.
CrossRef | CAS | PubMed |

[43]  A. A. Keller, A. Lazareva, Predicted releases of engineered nanomaterials: from global to regional to local. Environ. Sci. Technol. Lett 2014, 1, 65. [Published online early 14 October 2013]
CrossRef | CAS |

[44]  A. A. Keller, S. McFerran, A. Lazareva, S. Suh, Global life cycle releases of engineered nanomaterials. J. Nanopart. Res. 2013, 15, 1692.
CrossRef |

[45]  J. Buffle, G. G. Leppard, Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ. Sci. Technol. 1995, 29, 2169.
CrossRef | CAS | PubMed |

[46]  B. K. G. Theng, G. Yuan, Nanoparticles in the soil environment. Elements 2008, 4, 395.
CrossRef | CAS |

[47]  J. F. Banfield, H. Zhang, Nanoparticles in the environment. Rev. Mineral. Geochem. 2001, 44, 1.
CrossRef | CAS |

[48]  M. Taha, O. Taha, Influence of nano-material on the expansive and shrinkage soil behavior. J. Nanopart. Res. 2012, 14, 1190.
CrossRef |

[49]  S. Diegoli, A. L. Manciulea, S. Begum, I. P. Jones, J. R. Lead, J. A. Preece, Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci. Total Environ. 2008, 402, 51.
CrossRef | CAS | PubMed |

[50]  D. P. Stankus, S. E. Lohse, J. E. Hutchison, J. A. Nason, Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 2011, 45, 3238. [Published online early 16 December 2010]
CrossRef | CAS | PubMed |

[51]  P. D. Yates, G. V. Franks, S. Biggs, G. J. Jameson, Heteroaggregation with nanoparticles: effect of particle size ratio on optimum particle dose. Colloids Surf. A Physicochem. Eng. Asp. 2005, 255, 85.
CrossRef | CAS |

[52]  P. D. Yates, G. V. Franks, G. J. Jameson, Orthokinetic heteroaggregation with nanoparticles: effect of particle size ratio on aggregate properties. Colloids Surf. A Physicochem. Eng. Asp. 2008, 326, 83.
CrossRef | CAS |

[53]  P. Garcia-Perez, C. Pagnoux, F. Rossignol, J.-F. Baumard, Heterocoagulation between sio2 nanoparticles and al2o3 submicronparticles; influence of the background electrolyte. Colloids Surf. A Physicochem. Eng. Asp. 2006, 281, 58.
CrossRef | CAS |

[54]  S. M. Louie, R. D. Tilton, G. V. Lowry, Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation. Environ. Sci. Technol. 2013, 47, 4245.
CrossRef | CAS | PubMed |

[55]  E. M. Hotze, T. Phenrat, G. V. Lowry, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909.
CrossRef | CAS | PubMed |

[56]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
CrossRef | CAS | PubMed |

[57]  C. Levard, S. Mitra, T. Yang, A. D. Jew, A. R. Badireddy, G. V. Lowry, G. E. Brown, Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ. Sci. Technol. 2013, 47, 5738.
CrossRef | CAS | PubMed |

[58]  C. Levard, B. C. Reinsch, F. M. Michel, C. Oumahi, G. V. Lowry, G. E. Brown, Sulfidation processes of pvp-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ. Sci. Technol. 2011, 45, 5260.
CrossRef | CAS | PubMed |

[59]  J. G. Darab, A. B. Amonette, D. S. D. Burke, R. D. Orr, S. M. Ponder, B. Schrick, T. E. Mallouk, W. W. Lukens, D. L. Caulder, D. K. Shuh, Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron. Chem. Mater. 2007, 19, 5703.
CrossRef | CAS |

[60]  B. C. Reinsch, B. Forsberg, R. L. Penn, C. S. Kim, G. V. Lowry, Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ. Sci. Technol. 2010, 44, 3455.
CrossRef | CAS | PubMed |

[61]  M. Baalousha, P. Le Coustumer, I. Jones, J. R. Lead, Characterisation of structural and surface speciation of representative commercially available cerium oxide nanoparticles. Environ. Chem. 2010, 7, 377.
CrossRef | CAS |

[62]  Y. Liu, S. A. Majetich, R. D. Tilton, D. S. Sholl, G. V. Lowry, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ. Sci. Technol. 2005, 39, 1338.
CrossRef | CAS | PubMed |

[63]  A. M. Derfus, W. C. W. Chan, S. N. Bhatia, Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11.
CrossRef | CAS |

[64]  C. Noubactep, S. Caré, R. Crane, Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut. 2012, 223, 1363.
CrossRef | CAS | PubMed |

[65]  W. C. Hou, C. T. Jafvert, Photochemical transformation of aqueous C60 clusters in sunlight. Environ. Sci. Technol. 2009, 43, 362.
CrossRef | CAS | PubMed |

[66]  H.-J. Kim, T. Phenrat, R. D. Tilton, G. V. Lowry, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers. Environ. Sci. Technol. 2009, 43, 3824.
CrossRef | CAS | PubMed |

[67]  M. P. Monopoli, D. Walczyk, A. Campbell, G. Elia, I. Lynch, F. Baldelli Bombelli, K. A. Dawson, Physical–chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011, 133, 2525.
CrossRef | CAS | PubMed |

[68]  Y. Cheng, L. Yin, S. Lin, M. Wiesner, E. Bernhardt, J. Liu, Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J. Phys. Chem. C 2011, 115, 4425.
CrossRef | CAS |

[69]  N. Fauconnier, J. Pons, J. Roger, A. Bee, Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid Interface Sci. 1997, 194, 427.
CrossRef | CAS | PubMed |

[70]  J. Lee, N. M. Donahue, Secondary organic aerosol coating of synthetic metal-oxide nanoparticles. Environ. Sci. Technol. 2011, 45, 4689.
CrossRef | CAS | PubMed |

[71]  T. Cedervall, I. Lynch, S. Lindman, T. Berggård, E. Thulin, H. Nilsson, K. A. Dawson, S. Linse, Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050.
CrossRef | CAS | PubMed |

[72]  D. C. Sobeck, M. J. Higgins, Examination of three theories for mechanisms of cation-induced bioflocculation. Water Res. 2002, 36, 527.
CrossRef | CAS | PubMed |

[73]  N. Maximova, O. Dahl, Environmental implications of aggregation phenomena: current understanding. Curr. Opin. Colloid Interface Sci. 2006, 11, 246.
CrossRef | CAS |

[74]  M. Noh, T. Kim, H. Lee, C.-K. Kim, S.-W. Joo, K. Lee, Fluorescence quenching caused by aggregation of water-soluble CdSe quantum dots. Colloids Surf. A Physicochem. Eng. Asp. 2010, 359, 39.
CrossRef | CAS |

[75]  M. Cerbelaud, A. Videcoq, P. Abelard, C. Pagnoux, F. Rossignol, R. Ferrando, Heteroaggregation between Al2O3 submicrometer particles and SiO2 nanoparticles: experiment and simulation. Langmuir 2008, 24, 3001.
CrossRef | CAS | PubMed |

[76]  M. Baalousha, A. Manciulea, S. Cumberland, K. Kendall, J. R. Lead, Aggregation and surface properties of iron oxide nanoparticles: influence of ph and natural organic matter. Environ. Toxicol. Chem. 2008, 27, 1875.
CrossRef | CAS | PubMed |

[77]  J. Lebowitz, M. S. Lewis, P. Schuck, Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 2002, 11, 2067.
CrossRef | CAS | PubMed |

[78]  D. Zhou, A. I. Abdel-Fattah, A. A. Keller, Clay particles destabilize engineered nanoparticles in aqueous environments. Environ. Sci. Technol. 2012, 46, 7520.
CrossRef | CAS | PubMed |

[79]  F. von der Kammer, S. Legros, T. Hofmann, E. H. Larsen, K. Loeschner, Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation. TRAC – Trends Analyt. Chem. 2011, 30, 425.
CrossRef | CAS |

[80]  C. W. Isaacson, D. Bouchard, Asymmetric flow field flow fractionation of aqueous C60 nanoparticles with size determination by dynamic light scattering and quantification by liquid chromatography atmospheric pressure photo-ionization mass spectrometry. J. Chromatogr. A 2010, 1217, 1506.
CrossRef | CAS | PubMed |

[81]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, E. P. Gray, C. P. Higgins, J. F. Ranville, Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size. Environ. Sci. Technol. 2012, 46, 12 272.
CrossRef | CAS |

[82]  R. D. Boyd, S. K. Pichaimuthu, A. Cuenat, New approach to inter-technique comparisons for nanoparticle size measurements; using atomic force microscopy, nanoparticle tracking analysis and dynamic light scattering. Colloids Surf. A Physicochem. Eng. Asp. 2011, 387, 35.
CrossRef | CAS |

[83]  J. Farkas, H. Peter, P. Christian, J. A. Gallego Urrea, M. Hassellöv, J. Tuoriniemi, S. Gustafsson, E. Olsson, K. Hylland, K. V. Thomas, Characterization of the effluent from a nanosilver producing washing machine. Environ. Int. 2011, 37, 1057.
CrossRef | CAS | PubMed |

[84]  N. Akaighe, R. I. MacCuspie, D. A. Navarro, D. S. Aga, S. Banerjee, M. Sohn, V. K. Sharma, Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 2011, 45, 3895.
CrossRef | CAS | PubMed |

[85]  K. Tiede, S. P. Tear, H. David, A. B. A. Boxall, Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res. 2009, 43, 3335.
CrossRef | CAS | PubMed |

[86]  M. Nadler, T. Mahrholz, U. Riedel, C. Schilde, A. Kwade, Preparation of colloidal carbon nanotube dispersions and their characterisation using a disc centrifuge. Carbon 2008, 46, 1384.
CrossRef | CAS |

[87]  A. Neumann, W. Hoyer, M. Wolff, U. Reichl, A. Pfitzner, B. Roth, New method for density determination of nanoparticles using a CPS disc centrifuge. Colloids Surf. B Biointerfaces 2013, 104, 27.
CrossRef | CAS | PubMed |

[88]  A. R. Poda, A. J. Bednar, A. J. Kennedy, A. Harmon, M. Hull, D. M. Mitrano, J. F. Ranville, J. Steevens, Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry. J. Chromatogr. A 2011, 1218, 4219.
CrossRef | CAS | PubMed |

[89]  E. K. Lesher, J. F. Ranville, B. D. Honeyman, Analysis of ph dependent uranium(VI) sorption to nanoparticulate hematite by flow field-flow fractionation – inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2009, 43, 5403.
CrossRef | CAS | PubMed |

[90]  M. Baalousha, B. Stolpe, J. R. Lead, Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. J. Chromatogr. A 2011, 1218, 4078.
CrossRef | CAS | PubMed |

[91]  E. P. Gray, T. A. Bruton, C. P. Higgins, R. U. Halden, P. Westerhoff, J. F. Ranville, Analysis of gold nanoparticle mixtures: a comparison of hydrodynamic chromatography (HDC) and asymmetrical flow field-flow fractionation (AF4) coupled to ICP-MS. J. Anal. At. Spectrom. 2012, 27, 1532.
CrossRef | CAS |

[92]  R. B. Reed, D. G. Goodwin, K. L. Marsh, S. S. Capracotta, C. P. Higgins, D. H. Fairbrother, J. F. Ranville, Detection of single walled carbon nanotubes by monitoring embedded metals. Environ. Sci. Proc. Impacts 2013, 15, 204. [Published online early 7 December 2012]
CrossRef | CAS |

[93]  R. B. Reed, C. P. Higgins, P. Westerhoff, S. Tadjiki, J. F. Ranville, Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2012, 27, 1093.
CrossRef | CAS |

[94]  D. M. Mitrano, E. K. Lesher, A. Bednar, J. Monserud, C. P. Higgins, J. F. Ranville, Detecting nanoparticulate silver using single-particle inductively coupled plasma–mass spectrometry. Environ. Toxicol. Chem. 2012, 31, 115.
CrossRef | CAS | PubMed |

[95]  F. Laborda, J. Jimenez-Lamana, E. Bolea, J. R. Castillo, Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J. Anal. Atom. Spectrom. 2011, 26, 1362.
CrossRef | CAS |

[96]  E. P. Gray, J. G. Coleman, A. J. Bednar, A. J. Kennedy, J. F. Ranville, C. P. Higgins, Extraction and analysis of silver and gold nanoparticles from biological tissues using single particle inductively coupled plasma mass spectrometry. Environ. Sci. Technol. 2013, 47, 14 315.
CrossRef | CAS |

[97]  H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C. P. Higgins, J. F. Ranville, Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 2011, 83, 9361.
CrossRef | CAS | PubMed |

[98]  J.-f. Liu, Z.-s. Zhao, G.-b. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 2008, 42, 6949.
CrossRef | CAS | PubMed |

[99]  Q. Chen, D. Yin, S. Zhu, X. Hu, Adsorption of cadmium(II) on humic acid coated titanium dioxide. J. Colloid Interface Sci. 2012, 367, 241.
CrossRef | CAS | PubMed |

[100]  L. Liang, L. Luo, S. Zhang, Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales. Colloids Surf. A Physicochem. Eng. Asp. 2011, 384, 126.
CrossRef | CAS |

[101]  R. Ma, C. Levard, F. M. Michel, G. E. Brown, G. V. Lowry, Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. Environ. Sci. Technol. 2013, 47, 2527.
CrossRef | CAS | PubMed |

[102]  E. Lombi, E. Donner, S. Taheri, E. Tavakkoli, Å. K. Jämting, S. McClure, R. Naidu, B. W. Miller, K. G. Scheckel, K. Vasilev, Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge. Environ. Pollut. 2013, 176, 193.
CrossRef | CAS | PubMed |

[103]  G. V. Lowry, B. P. Espinasse, A. R. Badireddy, C. J. Richardson, B. C. Reinsch, L. D. Bryant, A. J. Bone, A. Deonarine, S. Chae, M. Therezien, B. P. Colman, H. Hsu-Kim, E. S. Bernhardt, C. W. Matson, M. R. Wiesner, Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 2012, 46, 7027.
CrossRef | CAS | PubMed |

[104]  C. O. Dimkpa, J. E. McLean, D. E. Latta, E. Manangón, D. W. Britt, W. P. Johnson, M. I. Boyanov, A. J. Anderson, CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart. Res. 2012, 14, 1125.
CrossRef |

[105]  A. D. Servin, H. Castillo-Michel, J. A. Hernandez-Viezcas, B. C. Diaz, J. R. Peralta-Videa, J. L. Gardea-Torresdey, Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of tio2 nanoparticles in cucumber (Cucumis sativus) plants. Environ. Sci. Technol. 2012, 46, 7637.
CrossRef | CAS | PubMed |

[106]  F. von der Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomterials in complex matrices (environment and biota): fgeneral considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
CrossRef | CAS | PubMed |

[107]  R. Saliminen, Geochemical Atlas of Europe Part 1 – Background information, methodology and maps 2005. Available at http://www.gtk.fi/publ/foregsatlas/ [Verified 20 December 2013].

[108]  J. W. Olesik, P. J. Gray, Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle. J. Anal. At. Spectrom. 2012, 27, 1143.
CrossRef | CAS |

[109]  M. D. Montaño, H. R. Badiei, S. Bazargan, J. F. Ranville, Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ. Sci.: Nano. 2014, 1, 338.
CrossRef |

[110]  T. J. Shaw, R. Raiswell, C. R. Hexel, H. P. Vu, W. S. Moore, R. Dudgeon, K. L. Smith, Input, composition, and potential impact of terrigenous material from free-drifting icebergs in the Weddell Sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1376.
CrossRef | CAS |

[111]  K. L. Chen, S. E. Mylon, M. Elimelech, Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ. Sci. Technol. 2006, 40, 1516.
CrossRef | CAS | PubMed |

[112]  E. Neubauer, F. von der Kammer, T. Hofmann, Using FlowFFF and HPSEC to determine trace metal–colloid associations in wetland runoff. Water Res. 2013, 47, 2757.
CrossRef | CAS | PubMed |

[113]  E. Neubauer, S. J. Köhler, F. von der Kammer, H. Laudon, T. Hofmann, Effect of pH and stream order on iron and arsenic speciation in boreal catchments. Environ. Sci. Technol. 2013, 47, 7120.
CrossRef | CAS | PubMed |

[114]  E. Neubauer, F. von der Kammer, K.-H. Knorr, S. Peiffer, M. Reichert, T. Hofmann, Colloid-associated export of arsenic in stream water during changing hydrological conditions. Chem. Geo. 2013, 352, 81.
CrossRef | CAS |


   
 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014