CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 31(2)

Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs

Susanna Marchi, Roberto Tognetti, Francesco Primo Vaccari, Mario Lanini, Mitja  Kaligarič, Francesco Miglietta and Antonio Raschi

Functional Plant Biology 31(2) 181 - 194
Published: 05 March 2004


Stomatal density, leaf conductance and water relations can be affected by an increase in the concentration of atmospheric CO2, and thus affect plant productivity. However, there is uncertainty about the effects of elevated CO2 on stomatal behaviour, water relations and plant productivity, owing to the lack of long-term experiments in representative natural ecosystems. In this work, variations in stomatal density and index, leaf water relations and plant biomass of semi-natural grassland communities were analysed under field conditions by comparing plants in three different experimental set-ups (natural CO2 springs, plastic tunnels and mini-FACE systems). Natural degassing vents continuously expose the surrounding vegetation to truly long-term elevated CO2 and can complement short-term manipulative experiments. Elevated CO2 concentration effects on stomata persist in the long term, though different species growing in the same environment show species-specific responses. The general decrease in stomatal conductance after exposure to elevated CO2 was not associated with clear changes in stomatal number on leaf surfaces. The hypothesis of long-term adaptive modifications to stomatal number and distribution of plants exposed to elevated CO2 was not supported by these experiments on grassland communities. Elastic cell wall properties were affected to some extent by elevated CO2. Above-ground biomass did not vary between CO2 treatments, leaf area index did not compensate for reduced stomatal conductance, and the root system had potentially greater soil exploration capacity. Considerable between-species variation in response to elevated CO2 may provide a mechanism for changing competitive interactions among plant species.

Keywords: biomass, leaf conductance, root density, stomatal density, water relations.

Full text doi:10.1071/FP03140

© CSIRO 2004

blank image
Subscriber Login

PDF (674 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014