CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 31(4)

Solute is imported to elongating root cells of barley as a pressure driven-flow of solution

Nick Gould, Michael R. Thorpe, Peter E. H. Minchin, Jeremy Pritchard and Philip J. White

Functional Plant Biology 31(4) 391 - 397
Published: 12 May 2004


This work relates solute import to elongating root cells in barley to the water relations of the symplastic pathway under conditions of varied plant K+ status. K+ is a major constituent of phloem sieve element (SE) sap, and as an osmoticum, it is believed to have a role in maintaining SE hydrostatic pressure and thus sap flow from source to sink tissue. The hypothesis that the solute import to elongating root cells is linked to pressure driven flow from the sieve tube is examined.

Plants were grown in solutions containing either 0.05 mM (low K) or 2.05 mM (high K) K+ concentration. Solute import to the root elongation zone was estimated from biomass accumulation over time accounting for respiration and root elongation rate. SE sap K+ concentration was measured using X-ray microanalyses and osmotic pressure by picolitre osmometry. SE hydrostatic pressure was measured directly with a pressure probe glued onto an excised aphid stylet. Elongating root cell hydrostatic pressure was measured using a cell pressure probe.

The low-K plants had lower SE K+ concentration and SE hydrostatic pressure compared to the high-K plants, but the elongating root cell hydrostatic pressure was similar in both treatments, thus the pressure difference between the SE and elongating root cells was less in the low-K plants compared to the high-K plants.

The solute import rate to elongating root cells was lower in the low K plants and the reduction could be accounted for as a pressure driven solute flux, with a reduction both in the pressure difference between root sieve elements and elongating cells, and in the sap concentration.

Keywords: aphid stylectomy, 11C, Hordeum vulgare, hydrostatic pressure, phloem, solute transport, symplastic pathway.

Full text doi:10.1071/FP03231

© CSIRO 2004

blank image
Subscriber Login

PDF (89 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016