CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 32(2)

Salinity-induced changes in the nutritional status of expanding cells may impact leaf growth inhibition in maize

Beatriz G. Neves-Piestun A, Nirit Bernstein A B

A Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, The Volcani Center, PO Box 6, Bet-Dagan 50-250, Israel.
B Corresponding author. Email: nirit@agri.gov.il
 
PDF (324 KB) $25
 Export Citation
 Print
  


Abstract

Salinity-induced excess or deficiency of specific nutrients are often hypothesised to operate as causes of growth inhibition and to trigger primary responses, which directly affect growth. Information concerning salinity effects on microelement nutrition in the growing cells is limited. In this study, salinity-(80 mm NaCl) inflicted alterations in spatial profiles of essential elements (N, P, K, S, Ca, Mg, Fe, Zn, Mn, Cu) and the salinity source (Na and Cl) were studied along the growing zone of leaf 4 of maize (Zea mays L.). Correlations between spatial profiles of growth and nutritional status of the tissue were tested for evaluation of the hypothesis that a disturbance of specific mineral nutritional factors in the growing cells might serve as causes of salt-induced growth inhibition. Examined nutritional elements exhibited unique distribution patterns, all of which were disturbed by salinity. With the exception of Na, Cl and Fe, the deposition rates of all the studied mineral elements were reduced by salinity throughout the elongating tissue. Localised contents of Ca, K and Fe in the growing tissue of the salt-stressed leaf were highly correlated with the intensity of localised tissue volumetric expansion, suggesting reduced levels of Ca and K, and toxic levels of Fe as possible causes of growth inhibition. Na and Cl accumulation were not correlated with growth inhibition under salinity.

Keywords: growing zone, leaves, macroelements, microelements, salinity, Zea mays.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014