CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 32(9)

Single-nucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme

Takayuki Umemoto A B, Noriaki Aoki A

A National Institute of Crop Science, Tsukuba, Ibaraki 305-8518, Japan.
B Corresponding author. Email: ume@affrc.go.jp
 
PDF (162 KB) $25
 Export Citation
 Print
  


Abstract

The starch synthase IIa (SSIIa) gene of rice (Oryza sativa L.) has been shown to be the alk gene that controls alkali disintegration of rice grains, although the effects of naturally occurring alk mutant alleles on enzyme function have yet to be determined. We genotyped 60 rice cultivars for two single-nucleotide polymorphisms (SNPs) in rice SSIIa, including one that results in an amino acid substitution. Incorporating data for three other SNPs previously genotyped in rice SSIIa, five haplotypes were found. We analysed the association of these SSIIa haplotypes with the chain-length distribution of amylopectin, the gelatinisation temperature of rice flour, the alkali spreading score, and the starch association of the enzyme. It was determined that two SNPs resulting in amino acid changes close to the C-terminus most likely alter SSIIa both in terms of activity and starch granule association. This in turn alters the branch-length distribution of amylopectin and the gelatinisation properties of starch.

Keywords: alk, alkali disintegration, alkali spreading score, amylopectin.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016