CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 32(11)

Salinity and the growth of non-halophytic grass leaves: the role of mineral nutrient distribution

Yuncai Hu A C, Wieland Fricke B, Urs Schmidhalter A

A Chair of Plant Nutrition, Department of Plant Sciences, Technical University of Munich, D-85350 Freising, Germany.
B Division of Biology, University of Paisley, Paisley PA1 2BE, Scotland, UK.
C Corresponding author. Email: hu@wzw.tum.de
PDF (246 KB) $25
 Export Citation


Salinity is increasingly limiting the production of graminaceous crops constituting the main sources of staple food (rice, wheat, barley, maize and sorghum), primarily through reductions in the expansion and photosynthetic yield of the leaves. In the present review, we summarise current knowledge of the characteristics of the spatial distribution patterns of the mineral elements along the growing grass leaf and of the impact of salinity on these patterns. Although mineral nutrients have a wide range of functions in plant tissues, their functions may differ between growing and non-growing parts of the grass leaf. To identify the physiological processes by which salinity affects leaf elongation in non-halophytic grasses, patterns of mineral nutrient deposition related to developmental and anatomical gradients along the growing grass leaf are discussed. The hypothesis that a causal link exists between ion deficiency and / or toxicity and the inhibition of leaf growth of grasses in a saline environment is tested.

Keywords: grasses, growth zone, leaves, mineral nutrients, net deposition rate, non-halophytes, salinity.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016