CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Submit Article
blank image
Use the online submission system to send us your paper.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 32(6)

Metabolic engineering of Arabidopsis to produce nutritionally important DHA in seed oil

Stan S. Robert A B D, Surinder P. Singh A C D, Xue-Rong Zhou A C D, James R. Petrie A C, Susan I. Blackburn A B, Peter M. Mansour A B, Peter D. Nichols A B, Qing Liu A C, Allan G. Green A C E

A Food Futures National Research Flagship.
B CSIRO Marine Research, GPO Box 1538, Hobart, Tas. 7001, Australia.
C CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia.
D These authors contributed equally.
E Corresponding author. Email: allan.green@csiro.au
PDF (179 KB) $25
 Export Citation


Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are nutritionally important long-chain (≥ C20) omega-3 polyunsaturated fatty acids (ω3 LC-PUFA) currently obtained mainly from marine sources. A set of genes encoding the fatty acid chain elongation and desaturation enzymes required for the synthesis of LC-PUFA from their C18 PUFA precursors was expressed seed-specifically in Arabidopsis thaliana. This resulted in the synthesis of DHA, the most nutritionally important ω3 LC-PUFA, for the first time in seed oils, along with its precursor EPA and the ω6 LC-PUFA arachidonic acid (ARA). The assembled pathway utilised Δ5 and Δ6 desaturases that operate on acyl-CoA substrates and led to higher levels of synthesis of LC-PUFA than previously reported with acyl-PC desaturases. This demonstrates the potential for development of land plants as alternative sources of DHA and other LC-PUFA to meet the growing demand for these nutrients.

Keywords: desaturase, DHA, elongase, EPA, genetic engineering, omega-3 fatty acid, seed oil.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016