CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 33(10)

How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase?

Guillaume Tcherkez

Laboratoire d’Ecophysiologie Végétale, CNRS UMR 8079, Bâtiment 362, Université Paris XI, 91405 Orsay, France. Email: guillaume.tcherkez@ese.u-psud.fr
PDF (222 KB) $25
 Export Citation


Despite the intense effort developed over the past 10 years to determine the 12C / 13C isotope fractionation associated with photorespiration, much uncertainty remains about the amplitude, and even the sign, of the 12C / 13C isotope fractionation of glycine decarboxylase, the enzyme that produces CO2 during the photorespiratory cycle. In fact, leaf gas-exchange data have repeatedly indicated that CO2 evolved by photorespiration is depleted in 13C compared with the source material, while glycine decarboxylase has mostly favoured 13C in vitro. Here I give theoretical insights on the glycine decarboxylase reaction and show that (i), both photorespiration and glycine decarboxylation must favour the same carbon isotope — the in vitro measurements being probably adulterated by the high sensitivity of the enzyme to assay conditions and the possible reversibility of the reaction in these conditions, and (ii), simplified quantum chemistry considerations as well as comparisons with other pyridoxal 5′-phosphate-dependent decarboxylases indicate that the carbon isotope fractionation favour the 12C isotope by ~20‰, a value that is consistent with the value of the photorespiratory fractionation (f) obtained by gas-exchange experiments.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015