CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 34(1)

Phosphorus deficiency inhibits growth in parallel with photosynthesis in a C3 (Panicum laxum) but not two C4 (P. coloratum and Cenchrus ciliaris) grasses

Oula Ghannoum A B, Jann P. Conroy A

A Centre for Plant and Food Science, University of Western Sydney, Locked Bag 1797, South Penrith DC, South Penrith, NSW 1797, Australia.
B Corresponding author. Email: o.ghannoum@uws.edu.au
PDF (338 KB) $25
 Export Citation


This study compared the growth and photosynthetic responses of one C3 (Panicum laxum L.) and two C4 grasses (Panicum coloratum L. and Cenchrus ciliaris L.) to changes in soil phosphorus (P) nutrition. Plants were grown in potted soil amended with six different concentrations of P. One week before harvest, leaf elongation and photosynthetic rates and the contents of carbohydrate, P and inorganic phosphate (Pi) were measured. Five weeks after germination, plants were harvested to estimate biomass accumulation. At each soil P supply, leaf P contents were lower in the C3 (0.6–2.6 mmol P m–2) than in the two C4 grasses (0.8–4.1 mmol P m–2), and Pi constituted ~40–65% of total leaf P. The P deficiency reduced leaf growth, tillering and plant dry mass to a similar extent in all three grasses. In contrast, P deficiency suppressed photosynthetic rates to a greater extent in the C3 (50%) than the C4 grasses (25%). The foliar contents of non-structural carbohydrates were affected only slightly by soil P supply in all three species. Leaf mass per area decreased at low P in the two C4 grasses only, and biomass partitioning changed little with soil P supply. The percentage changes in assimilation rates and plant dry mass were linearly related in the C3 but not the C4 plants. Thus, P deficiency reduced growth in parallel with reductions of photosynthesis in the C3 grass, and independently of photosynthesis in the two C4 grasses. We propose that this may be related to a greater Pi requirement of C4 relative to C3 photosynthesis. Photosynthetic P use efficiency was greater and increased more with P deficiency in the C4 relative to the C3 species. The opposite was observed for whole-plant P-use efficiency. Hence, the greater P-use efficiency of C4 photosynthesis was not transferred to the whole-plant level, mainly as a result of the larger and constant leaf P fraction in the two C4 grasses.

Keywords: phosphorus use efficiency.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015