CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 36(6)

Heat acclimation induced acquired heat tolerance and cross adaptation in different grape cultivars: relationships to photosynthetic energy partitioning

Li-Jun Wang A, Wayne Loescher B, Wei Duan A, Wei-Dong Li C, Shu-Hua Yang A, Shao-Hua Li D E

A Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P. R. China.
B College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824, USA.
C School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100029, P. R. China.
D Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan 430074, P. R. China.
E Corresponding author. Email: sshli@wbgcas.cn
PDF (551 KB) $25
 Export Citation


Several mechanisms on acquired heat tolerance and cross adaptation have been proposed; however, relationships to photosynthetic energy partitioning remain unknown. The effects of heat pretreatment on cold and heat tolerance in grapevine leaves of two cultivars (‘Jingxiu’, cold sensitive; ‘Beta’, cold tolerant) were evident in changes in the antioxidant system, lipid peroxidation, net photosynthesis rate and also in chlorophyll fluorescence according : Y(II) + Y(NPQ) + Y(NO) = 1, where Y(II) is the effective PSII quantum yield; Y(NPQ) is regulated energy dissipation as a protective mechanism; and Y(NO) is non-regulated energy dissipation as a damaging mechanism. Heat pretreatment enhanced heat tolerance in the two cultivars, which was associated with less energy partitioned in non-regulated energy dissipation, less lipid peroxidation and higher antioxidant enzyme (catalase, ascorbate peroxidase and guaiacol peroxidase) activities compared with control plants under heat stress. Heat pretreatment also induced cold tolerance in ‘Jingxiu’ and ‘Beta’ leaves. This cross adaptation seemed to be attributable in part to less non-regulated energy dissipation in pretreated ‘Jingxiu’ and ‘Beta’ than the controls under cold stress. The evidence that lipid peroxidation was less and antioxidant enzyme activities were higher in pretreated plants under cold stress further corroborated the results from energy partitioning.

Keywords: chlorophyll fluorescence new parameters, cold tolerance, energy partition, grape, heat tolerance.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016