CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 37(6)

The central role of the VERNALIZATION1 gene in the vernalization response of cereals

Ben Trevaskis

A CSIRO Division of Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia. Email: ben.trevaskis@csiro.au
This paper originates from the Peter Goldacre Award 2009 of the Australian Society of Plant Scientists that was received by the author.
 
 Full Text
 PDF (531 KB)
 Export Citation
 Print
  


Abstract

Many varieties of wheat (Triticum spp.) and barley (Hordeum vulgare L.) require prolonged exposure to cold during winter in order to flower (vernalization). In these cereals, vernalization-induced flowering is controlled by the VERNALIZATION1 (VRN1) gene. VRN1 is a promoter of flowering that is activated by low temperatures. VRN1 transcript levels increase gradually during vernalization, with longer cold treatments inducing higher expression levels. Elevated VRN1 expression is maintained in the shoot apex and leaves after vernalization, and the level of VRN1 expression in these organs determines how rapidly vernalized plants flower. Some alleles of VRN1 are expressed without vernalization due to deletions or insertions within the promoter or first intron of the VRN1 gene. Varieties of wheat and barley with these alleles flower without vernalization and are grown where vernalization does not occur. The first intron of the VRN1 locus has histone modifications typically associated with the maintenance of an inactive chromatin state, suggesting this region is targeted by epigenetic mechanisms that contribute to repression of VRN1 before winter. Other mechanisms are likely to act elsewhere in the VRN1 gene to mediate low-temperature induction. This review examines how understanding the mechanisms that regulate VRN1 provides insights into the biology of vernalization-induced flowering in cereals and how this will contribute to future cereal breeding strategies.

Keywords: barley, flowering, wheat.


   
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015