CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 38(2)

Plant nutrient acquisition and utilisation in a high carbon dioxide world

T. R. Cavagnaro A C , R. M. Gleadow A and R. E. Miller A B

A School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia.
B The Australian Centre for Biodiversity, Monash University, Clayton, Vic. 3800, Australia.
C Corresponding author. Email: timothy.cavagnaro@monash.edu

Functional Plant Biology 38(2) 87-96 http://dx.doi.org/10.1071/FP10124
Submitted: 4 June 2010  Accepted: 18 November 2010   Published: 1 February 2011


 
PDF (308 KB) $25
 Export Citation
 Print
  
Abstract

Producing enough food to meet the needs of an increasing global population is one of the greatest challenges we currently face. The issue of food security is further complicated by impacts of elevated CO2 and climate change. In this viewpoint article, we begin to explore the impacts of elevated CO2 on two specific aspects of plant nutrition and resource allocation that have traditionally been considered separately. First, we focus on arbuscular mycorrhizas, which play a major role in plant nutrient acquisition. We then turn our attention to the allocation of resources (specifically N and C) in planta, with an emphasis on the secondary metabolites involved in plant defence against herbivores. In doing so, we seek to encourage a more integrated approach to investigation of all aspects of plant responses to eCO2.

Additional keywords:arbuscular mycorrhizas, cyanogenesis, elevated CO2, food security, nitrogen, secondary metabolism.


References

Agrawal AA, Fishbein M (2006) Plant defense syndromes. Ecology 87, S132–S149.
CrossRef | PubMed |

Agrell J, Anderson P, Oleszek W, Stochmal A, Agrell C (2006) Elevated CO2 levels and herbivore damage alter host plant preferences. Oikos 112, 63–72.
CrossRef |

Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165, 351–372.
CrossRef | PubMed |

Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell and Environment 30, 258–270.
CrossRef | CAS |

Alberton O, Kuyper TW, Gorissn A (2005) Taking mycocentrism seriously: mycorrhizal fungal and plant responses to elevated CO2. New Phytologist 167, 859–868.
CrossRef | CAS | PubMed |

Allen MF, Swenson W, Querejeta JI, Egerton-Warburton LM, Treseder KK (2003) Ecology of mycorrhizae: a conceptual framework for complex interactions among plants and fungi. Annual Review of Phytopathology 41, 271–303.
CrossRef | CAS | PubMed |

Ames RN, Reid CPP, Porter LK, Cambardella C (1983) Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular arbuscular mycorrhizal fungus. New Phytologist 95, 381–396.
CrossRef |

Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998) Branched adsorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytologist 139, 375–388.
CrossRef |

Bazin A, Goverde M, Erhardt A, Shykoff JA (2002) Influence of atmospheric carbon dioxide enrichment on induced response and growth compensation after herbivore damage in Lotus corniculatus. Ecological Entomology 27, 271–278.
CrossRef |

Bennett AE, Alers-Garcia J, Bever JD (2006) Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. American Naturalist 167, 141–152.
CrossRef | PubMed |

Bidart-Bouzat MG, Imeh-Nathaniel A (2008) Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology 50, 1339–1354.
CrossRef | CAS | PubMed |

Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328, 899–903.
CrossRef | CAS | PubMed |

Boege K, Marquis RJ (2005) Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends in Ecology & Evolution 20, 441–448.
CrossRef |

Campbell CD, Sage RF (2006) Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus alba L.) Plant, Cell & Environment 29, 844–853.
CrossRef | CAS | PubMed |

Cardoso A, Ernesto M, Cliff J, Egan SV, Bradbury JH (1998) Cyanogenic potential of cassava flour: field trial in Mozambique of a simple kit. International Journal of Food Sciences and Nutrition 49, 93–99.
CrossRef | CAS | PubMed |

Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant and Soil 304, 315–325.
CrossRef | CAS |

Cavagnaro TR, Smith FA, Lorimer MF, Haskard KA, Ayling SM, Smith SE (2001) Quantitative development of Paris-type arbuscular mycorrhizas formed between Asphodelus fistulosus and Glomus coronatum. New Phytologist 149, 105–113.
CrossRef |

Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant, Cell & Environment 164, 485–491.

Cavagnaro TR, Sokolow SK, Jackson LE (2007) Mycorrhizal effects on growth and nutrition of tomato under elevated atmospheric carbon dioxide. Functional Plant Biology 34, 730–736.
CrossRef | CAS |

Chen X, Tu C, Burton MG, Watson DM, Burkey KO, Hu S (2007) Plant nitrogen acquisition and interactions under elevated carbon dioxide: impact of endophytes and mycorrhizae. Global Change Biology 13, 1238–1249.
CrossRef |

Coley PD, Massa M, Lovelock CE, Winter K (2002) Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133, 62–69.
CrossRef |

Collins-Johnson N, Wolf J, Reyes MA, Panter A, Koch GW, Redman A (2005) Species of plants and associated arbuscular mycorrhizal fungi mediate mycorrhizal responses to CO2 enrichment. Global Change Biology 11, 1156–1166.
CrossRef |

Conroy JP, Milham PJ, Barlow EWR (1992) Effect of nitrogen and phosphorus availability on the growth-response of Eucalyptus grandis to high CO2. Plant, Cell & Environment 15, 843–847.
CrossRef | CAS |

Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Global Environmental Change 19, 292–305.
CrossRef |

Cornelissen T, Fernandes GW, Vasconcellos-Neto J (2008) Size does matter: variation in herbivory between and within plants and the plant vigor hypothesis. Oikos 117, 1121–1130.
CrossRef |

Cotrufo MF, Ineson P, Scott A (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology 4, 43–54.
CrossRef |

Daepp M, Nösberger J, Lüscher A (2001) Nitrogen fertilization and developmental stage alter the response of Lolium perenne to elevated CO2. New Phytologist 150, 347–358.
CrossRef | CAS |

de Graaff MA, van Groeningen KJ, Six J, Hungate BA, van Kessel C (2006) Interactions between plant growth and nutrient dynamics under elevated CO2: a meta analysis. Global Change Biology 12, 2077–2091.
CrossRef |

Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytologist 163, 187–200.
CrossRef |

Dickson S, Kolesik P (1999) Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9, 205–213.
CrossRef |

Dickson S, Smith SE (2001) Cross walls in arbuscular trunk hyphae form after loss of metabolic activity. New Phytologist 151, 735–742.
CrossRef |

Dijkstra FA, Blumenthal D, Morgan JA, LeCain DR, Follett RF (2010) Elevated CO2 effects on semi-arid grassland plants in relation to water availability and competition. Functional Ecology 24, 1152–1161.
CrossRef |

Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology 48, 609–639.
CrossRef | CAS | PubMed |

Edwards EJ, McCaffery S, Evans JR (2005) Phosphorus status determines biomass response to elevated CO2 in a legume: C4 grass community. Global Change Biology 11, 1968–1981.

Erbs M, Manderscheid R, Jansen G, Seddig S, Pacholski A, Weigel H-J (2010) Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agriculture Ecosystems & Environment 136, 59–68.
CrossRef | CAS |

Gamper H, Peter M, Jansa J, Luscher A, Hartwig UA, Leuchtmann A (2004) Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Global Change Biology 10, 189–199.
CrossRef |

Gamper H, Hartwig UA, Leuchtmann A (2005) Mycorrhizas improve nitrogen nutrition of Trifolium repens after 8 yr of selection under elevated atmospheric CO2 partial pressure. New Phytologist 167, 531–542.
CrossRef | CAS | PubMed |

Gange AC, West HM (1994) Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytologist 128, 79–87.
CrossRef |

Garcia MO, Ovasapyan T, Greas M, Treseder KK (2008) Mycorrhizal dynamics under elevated CO2 and nitrogen fertilization in a warm temperate forest. Plant and Soil 303, 301–310.
CrossRef | CAS |

Gavito ME, Bruhn D, Jakobsen I (2002) P uptake by arbuscular mycorrhizal hyphae does not increase when the host plant grows under atmospheric CO2 enrichment. New Phytologist 154, 751–760.
CrossRef | CAS |

Gavito ME, Schweiger P, Jakobsen I (2003) P uptake by arbuscular mycorrhizal hyphae: effect of soil temperature and atmospheric CO2 enrichment. Global Change Biology 9, 106–116.
CrossRef |

Ghannoum O, von Caemmerer S, Barlow EWR, Conroy JP (1997) The effect of CO2 enrichment and irradiance on the growth, morphology and gas exchange of a C3 (Panicum laxum) and a C4 (Panicum antidotale) grass. Australian Journal of Plant Physiology 24, 227–237.
CrossRef | CAS |

Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake in roots. Planta 222, 688–698.
CrossRef | CAS | PubMed |

Gleadow RM, Woodrow IE (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiology 20, 591–598.
| CAS | PubMed |

Gleadow RM, Woodrow IE (2002) Constraints on effectiveness of cyanogenic glycosides in herbivore defense. Journal of Chemical Ecology 28, 1301–1313.
CrossRef | CAS | PubMed |

Gleadow RM, Foley WJ, Woodrow IE (1998) Enhanced CO2 alters the relationship between photosynthesis and defence in cyanogenic Eucalyptus cladocalyx F. Muell. Plant, Cell & Environment 21, 12–22.
CrossRef | CAS |

Gleadow RM, Edwards E, Evans J (2009a) Changes in nutritional value of cyanogenic Trifolium repens at elevated CO2. Journal of Chemical Ecology 35, 476–478.
CrossRef | CAS | PubMed |

Gleadow RM, Evans J, McCaffrey S, Cavagnaro TR (2009b) Growth and nutritive value of cassava (Manihot esculenta Cranz.) are reduced when grown at elevated CO2. Plant Biology 11, 76–82.
CrossRef | CAS | PubMed |

Gleadow R, Cavagnaro T, O’Donnell N, Evans J, Neale A, Blomstedt C, Hamill J (2009c) Unbalancing global resources: will plants be edible in a high CO2 world? Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 153, s225
CrossRef |

González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genetics and Biology 42, 130–140.
CrossRef | PubMed |

González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17, 327–335.
CrossRef | PubMed |

Gregory PJ, Johnson SN, Newton AC, Ingram JSI (2009) Integrating pests and pathogens into the climate change/food security debate. Journal of Experimental Botany 60, 2827–2838.
CrossRef | CAS | PubMed |

Grünzweig JM, Körner C (2003) Differential phosphorus and nitrogen effects drive species and community responses to elevated CO2 in semi-arid grassland. Functional Ecology 17, 766–777.
CrossRef |

Hartwig UA, Wittmann P, Braun R, Hartwig-Räz B, Jansa J, Mozafar A, Lüscher A, Leuchtmann A, Frossard E, Nösberger J (2002) Arbuscular mycorrhiza infection enhances the growth response of Lolium perenne to elevated atmospheric pCO2. Journal of Experimental Botany 53, 1207–1213.
CrossRef | CAS | PubMed |

Haugen R, Steffes L, Wolf J, Brown P, Matzner S, Siemens DH (2008) Evolution of drought tolerance and defense: dependence of tradeoffs on mechanism, environment and defense switching. Oikos 117, 231–244.
CrossRef |

Högy P, Fangmeier A (2008) Effects of elevated atmospheric CO2 on grain quality of wheat. Journal of Cereal Science 48, 580–591.
CrossRef |

Högy P, Wieser H, Köhler P, Schwadorf K, Breuer J, Franzaring J, Muntifering R, Fangmeier A (2009) Effects of elevated CO2 on grain yield and quality of wheat: results from a 3-year free-air CO2 enrichment experiment. Plant Biology 11, 60–69.
CrossRef | PubMed |

Högy P, Franzaring J, Schwadorf K, Breuer J, Schultze W, Fangmeier A (2010) Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agriculture Ecosystems & Environment 139, 239–244.
CrossRef |

Hu S, Tu C, Chen X, Gruver JB (2006) Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant and Soil 289, 47–58.
CrossRef | CAS |

IPCC (2007) Technical summary. In ‘Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change’. pp. 19–91. (Cambridge University Press: Cambridge)

Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annual Review of Plant Biology 59, 341–363.
CrossRef | CAS | PubMed |

Jifon JL, Graham JH, Drouillard DL, Syvertsen JP (2002) Growth depression of mycorrhizal Citrus seedlings grown at high phosphorus supply is mitigated by elevated CO2. New Phytologist 153, 133–142.
CrossRef |

Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum. 3. Hyphal transport of 32P and 15N. New Phytologist 124, 61–68.
CrossRef | CAS |

Jones DA (1998) Why are so many food plants cyanogenic? Phytochemistry 47, 155–162.
CrossRef | CAS | PubMed |

Kimball BA, Morris CE, Pinter PJ, Wall GW, Hunsaker DJ, Adamsen FJ, LaMorte RL, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ (2001) Elevated CO2, drought and soil nitrogen effects on wheat grain quality. New Phytologist 150, 295–303.
CrossRef | CAS |

Klironomos JN, Ursic M, Rillig M, Allen MF (1998) Interspecific differences in the response of arbuscular mycorrhizal fungi to Artemisia tridentata grown under elevated atmospheric CO2. New Phytologist 138, 599–605.
CrossRef |

Lambers H (1993) Rising CO2, secondary plant metabolism, plant–herbivore interactions and litter decomposition: theoretical considerations. Vegetation 104–105, 263–271.
CrossRef |

Lawler IR, Foley WJ, Woodrow IE, Cork SJ (1997) The effects of elevated CO2 atmospheres on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109, 59–68.
CrossRef |

Lincoln DE, Fajer ED, Johnson RH (1993) Plant insect herbivore interactions in elevated CO2 environments. Trends in Ecology & Evolution 8, 64–68.
CrossRef | CAS |

Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions and ecosystem dynamics. Journal of Chemical Ecology 36, 2–21.
CrossRef | CAS |

Lindroth RL, Kinney KK, Platz CL (1993) Responses of deciduous trees to elevated atmospheric CO2: productivity, phytochemistry and insect performance. Ecology 74, 763–777.
CrossRef | CAS |

Loladze I (2002) Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometery. Trends in Ecology & Evolution 17, 457–461.
CrossRef |

Lovelock C, Kyllo D, Popp M, Isopp H, Virgo A, Winter K (1997) Symbiotic vesicular arbuscular mycorrhizae influence maximum rates of photosynthesis in tropical tree seedlings grown under elevated CO2. Australian Journal of Plant Physiology 24, 185–194.
CrossRef | CAS |

Lukac M, Calfapietra C, Godbold DL (2003) Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE). Global Change Biology 9, 838–848.
CrossRef |

Lukac M, Calfapietra C, Lagomarsino A, Loreto F (2010) Global climate change and tree nutrition: effects of elevated CO2 and temperature. Tree Physiology 30, 1209–1220.
CrossRef | CAS | PubMed |

Martre P, Porter JR, Jamieson PD, Triboi E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiology 133, 1959–1967.
CrossRef | CAS | PubMed |

Matros A, Amme S, Kettig B, Buck-Sorlin GH, Sonnewald U, Mock HP (2006) Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant, Cell & Environment 29, 126–137.
CrossRef | CAS | PubMed |

Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 – do photosynthetic and productivity data from FACE experiments support early predictions? New Phytologist 162, 253–280.
CrossRef |

Olesniewicz KS, Thomas RB (1999) Effects of mycorrhizal colonization on biomass prodution and nitrogen fixation of black locust (Robinia pseudoacacia) seedlings grown under elevated atmospheric carbon dioxide. New Phytologist 142, 133–140.
CrossRef |

Olsrud M, Carlsson BA, Svensson BM, Michelsen A, Melillo JM (2010) Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understorey. Global Change Biology 16, 1820–1829.
CrossRef |

Peñuelas J, Estiarte M (1998) Can elevated CO2 affect secondary metabolism and ecosystem function? Trends in Ecology & Evolution 13, 20–24.
CrossRef |

Reich PB, Hobbie SE, Lee TD, Ellsworth DS, West JB, Timan D, Knops JMH, Naeem S, Trost J (2006) Nitrogen limitation constraints sustainability of ecosystem response to CO2. Nature 440, 922–925.
CrossRef | CAS | PubMed |

Rhoades DF (1979) ‘Evolution of chemical defence against herbivores.’ (Academic Press: New York)

Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7, 740–754.
CrossRef |

Rillig MC, Allen MF (1999) What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza 9, 1–8.
CrossRef |

Rillig MC, Allen MF, Klironomos JN, Field CB (1998) Arbuscular mycorrhizal percent infection and infection intensity of Bromus hordeaceus grown in elevated atmospheric CO2. Mycologia 90, 199–205.
CrossRef |

Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology 151, 1009–1016.
CrossRef | CAS | PubMed |

Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302, 1917–1919.
CrossRef | CAS | PubMed |

Rouhier H, Read DJ (1998) The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytologist 139, 367–373.
CrossRef |

Sanders IR, Streitwolf-Engel R, van der Heijden MGA, Boller T, Wiemken A (1998) Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117, 496–503.
CrossRef |

Schädler M, Roeder M, Brandl R, Matthies D (2007) Interacting effects of elevated CO2, nutrient availability and plant species on a generalist invertebrate herbivore. Global Change Biology 13, 1005–1015.
CrossRef |

Smith SE, Read DJ (2008) ‘Mycorrhizal symbiosis.’ (Academic Press Ltd: Cambridge, UK)

Smith SE, St John BJ, Smith FA, Nicholas DJD (1985) Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum L. and Allium cepa L.: effects of mycorrhizal infection and phosphate nutrition. New Phytologist 99, 211–227.
CrossRef | CAS |

Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162, 511–524.
CrossRef |

Staddon PL, Fitter AH, Graves JD (1999) Effect of elevated atmospheric CO2 on mycorrhizal colonisation, external hyphal production and phosphorus inflow in Plantago lanceolata and Trifolium repens in association with the arbuscular mycorrhizal afungus Glomus mosseae. Global Change Biology 5, 347–358.
CrossRef |

Staddon PL, Gregersen R, Jakobsen I (2004) The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biology 10, 1909–1921.
CrossRef |

Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Global Change Biology 13, 1823–1842.
CrossRef |

Stitt M, Krapp A (1999) The molecular physiological basis for the interaction between elevated carbon dioxide and nutrients. Plant, Cell & Environment 22, 583–621.
CrossRef | CAS |

Stöcklin J, Schweizer K, Körner C (1998) Effects of elevated CO2 and phosphorus addition on productivity and community composition of intact monoliths from calcareous grassland. Oecologia 116, 50–56.
CrossRef |

Syvertsen JP, Graham JH (1999) Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange response of two Citrus spp. grown at elevated [CO2]. Plant and Soil 208, 209–219.
CrossRef | CAS |

Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant, Cell & Environment 28, 1247–1254.
CrossRef | CAS |

Taub DR, Miller B, Allen H (2008) Effects of elevated CO2 on the protein concentration of food crops: a meta-analysis. Global Change Biology 14, 565–575.
CrossRef |

Tobar R, Azcón R, Barea JM (1994) Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiz under water-stressed conditions. New Phytologist 126, 119–122.
CrossRef |

Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phophorus, and atmospheric CO2 in field studies. New Phytologist 164, 347–355.
CrossRef |

Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytologist 147, 189–200.
CrossRef | CAS |

van Aarle IM, Cavagnaro TR, Smith SE, Smith FA, Dickson S (2005) Metabolic activity of Glomus intraradices in Arum- and Paris-type arbuscular mycorrhiza colonization. New Phytologist 166, 611–618.
CrossRef | PubMed |

Veteli TO, Kuokkanen K, Julkenen-Tiitto R, Roininen H, Tahvanainen J (2002) Effects of elevated CO2 and temperature on plant growth and defensive chemistry. Global Change Biology 8, 1240–1252.
CrossRef |

Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology 5, 723–741.
CrossRef |

Westley J (1988) Mammalian cyanide detoxification with sulfane sulfur. Ciba Foundation Symposium 140, 201–218.
| CAS | PubMed |

Wieser H, Manderscheid R, Erbs M, Weigel H-J (2008) Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. Journal of Agricultural and Food Chemistry 56, 6531–6535.
CrossRef | CAS | PubMed |

Zagrobelny M, Bak S, Møller BL (2008) Cyanogenesis in plants and arthropods. Phytochemistry 69, 1457–1468.
CrossRef | CAS | PubMed |

Ziska LH, Emche SD, Johnson EL, George K, Reed DR, Sicher RC (2005) Alterations in the production and concentration of selected alkaloids as a function of rising atmospheric carbon dioxide and air temperature: implications for ethno-pharmacology. Global Change Biology 11, 1798–1807.
CrossRef |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015