Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Germanium as a tool to dissect boron toxicity effects in barley and wheat

Julie E. Hayes A C , Margaret Pallotta A , Ute Baumann A , Bettina Berger B , Peter Langridge A and Tim Sutton A
+ Author Affiliations
- Author Affiliations

A Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.

B The Plant Accelerator, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.

C Corresponding author. Email: julie.hayes@acpfg.com.au

Functional Plant Biology 40(6) 618-627 https://doi.org/10.1071/FP12329
Submitted: 2 November 2012  Accepted: 12 February 2013   Published: 2 April 2013

Abstract

Tolerance to boron (B) toxicity in barley (Hordeum vulgare L.) is partially attributable to HvNIP2;1, an aquaporin with permeability to B, as well as to silicon, arsenic and germanium (Ge). In this study, we mapped leaf symptoms of Ge toxicity in a doubled-haploid barley population (Clipper × Sahara 3771). Two quantitative trait loci (QTL) associated with Ge toxicity symptoms were identified, located on Chromosomes 6H and 2H. These QTL co-located with two of four B toxicity tolerance loci previously mapped in the same population. The B toxicity tolerance gene underlying the 6H locus encodes HvNIP2;1, whereas the gene(s) and mechanisms underlying the 2H locus are as yet unknown. We provide examples of the application of Ge in studying specific aspects of B toxicity tolerance in plants, including screening of wheat (Triticum aestivum L.) and barley populations for altered function of HvNIP2;1 and related proteins. In particular, Ge may facilitate elucidation of the mechanism and gene(s) underlying the barley Chromosome 2H B tolerance locus.

Additional keywords: aquaporins, HvNIP2;1, LemnaTec digital imaging and analysis.


References

Bhattacharjee H, Mukhopadhyay R, Thiyagarajan S, Rosen BP (2008) Aquaglyceroporins: ancient channels for metalloids. Journal of Biology 7, 33
Aquaglyceroporins: ancient channels for metalloids.Crossref | GoogleScholarGoogle Scholar |

Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology 6, 26
A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes.Crossref | GoogleScholarGoogle Scholar |

Cakmak I, Kurz H, Marschner H (1995) Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiologia Plantarum 95, 11–18.
Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XhvVyjtQ%3D%3D&md5=cc35cf007dc7e833e5c064a1737f4a06CAS |

Cartwright B, Zarcinas BA, Mayfield AH (1984) Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia. Australian Journal of Soil Research 22, 261–272.
Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlsVGms74%3D&md5=4d08d57a90dd1b7c94c1aec912c2a94dCAS |

Casano LM, Martìn M, Sabater B (2001) Hydrogen peroxide mediates the induction of chloroplastic Ndh complex under photooxidative stress in barley. Plant Physiology 125, 1450–1458.
Hydrogen peroxide mediates the induction of chloroplastic Ndh complex under photooxidative stress in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXitFWrtbg%3D&md5=04c32774e8bb289c64f07cd24862e68fCAS |

Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. The Plant Journal 57, 810–818.
HvLsi1 is a silicon influx transporter in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjslSlsbw%3D&md5=dc0c1a3f8017cc434afa85d8d42a2d4fCAS |

Gietz RD, Woods RA (2002) Transformation of yeast by the Liac/SS carrier DNA/PEG method. Methods in Enzymology 350, 87–96.
Transformation of yeast by the Liac/SS carrier DNA/PEG method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVaqs7g%3D&md5=840e0b51ed38402c9076257fe71b7c33CAS |

Halperin SJ, Barzilay A, Carson M, Roberts C, Lynch J, Komarneni S (1995) Germanium accumulation and toxicity in barley. Journal of Plant Nutrition 18, 1417–1426.
Germanium accumulation and toxicity in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXmt12gsrg%3D&md5=39f8fa47be90066efc48bb762746c33cCAS |

Ishii T, Matsunaga T, Iwai H, Satoh S, Taoshita J (2002) Germanium does not substitute for boron in cross-linking of rhamnogalacturonan II in pumpkin cell walls. Plant Physiology 130, 1967–1973.
Germanium does not substitute for boron in cross-linking of rhamnogalacturonan II in pumpkin cell walls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlKk&md5=4cbae88352bb9f849bd9b75fe3337f69CAS |

Jefferies SP, Barr AR, Karakousis A, Kretshmer JM, Manning S, Chalmers KJ, Nelson JC, Islam AKMR, Langridge P (1999) Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 98, 1293–1303.
Mapping of chromosome regions conferring boron toxicity tolerance in barley (Hordeum vulgare L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVGksrc%3D&md5=a194bf5abf9d49677770be9f78a7c436CAS |

Jefferies SP, Pallotta MA, Paull JG, Karakousis A, Kretshmer JM, Manning S, Islam AKMR, Langridge P, Chalmers KJ (2000) Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum L.). Theoretical and Applied Genetics 101, 767–777.
Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum L.).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFyhurg%3D&md5=99f3a6c5be1fe1269a36b412d50767f4CAS |

Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24, 2788–2789.
QGene 4.0, an extensible Java QTL-analysis platform.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWms77J&md5=132f5b995271b63e5088dd65b9a990deCAS |

Karakousis A, Barr AR, Kretschmer JM, Manning S, Jefferies SP, Chalmers KJ, Islam AKM, Langridge P (2003) Mapping and QTL analysis of the barley population Clipper × Sahara. Australian Journal of Agricultural Research 54, 1137–1140.
Mapping and QTL analysis of the barley population Clipper × Sahara.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2mtLs%3D&md5=d25427a4c8afbb698e5b7fda2876874aCAS |

Loomis WD, Durst RW (1991) Boron and cell walls. In: ‘Current topics in plant biochemistry and physiology, Vol. 10’. (Eds DD Randall, DG Blevins, CD Miles) pp. 149–178. (University of Missouri: Columbia, MO)

Ma JF, Goto S, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiology 130, 2111–2117.
A rice mutant defective in Si uptake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktlyg&md5=5dc3d27c5a81c2df1aaffc256a307f1bCAS |

Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440, 688–691.
A silicon transporter in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XivFWgurw%3D&md5=8d0d0eb4d26dc81c9bdf579730d0a635CAS |

Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448, 209–212.
An efflux transporter of silicon in rice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnsFeisbg%3D&md5=093127f5fb4fe5a502edfbe3939dd057CAS |

Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences of the United States of America 105, 9931–9935.
Transporters of arsenite in rice and their role in arsenic accumulation in rice grain.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptFGisbc%3D&md5=306d375c2123bc8903ff929378ece0b5CAS |

Meharg AA (2004) Arsenic in rice – understanding a new disaster for South-east Asia. Trends in Plant Science 9, 415–417.
Arsenic in rice – understanding a new disaster for South-east Asia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVOjt78%3D&md5=96d8c5b81f4390791769ed29a9841207CAS |

Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron and arsenic. Journal of Experimental Botany 62, 4391–4398.
The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron and arsenic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVeit7jF&md5=f486aa9157eed2dc0fe58886deb98002CAS |

Nikolic M, Nikolic N, Liang YC, Kirkby EA, Römheld V (2007) Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiology 143, 495–503.
Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1OltA%3D%3D&md5=4e10b04cdf04a0c8b1b58b6954b322c8CAS |

Paull JG, Rathjen AJ, Langridge P (1995) Location of genes controlling boron tolerance of wheat. In ‘Proceedings of the 8th International Wheat Genetics Symposium, Beijing, 19–24 July 1993’. (Eds ZS Li, ZY Xin) pp. 1065–1069. (China Agricultural Scientech Press)

Rains DW, Epstein E, Zasoski RJ, Aslam M (2006) Active silicon uptake by wheat. Plant and Soil 280, 223–228.
Active silicon uptake by wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhslOrsLo%3D&md5=f75d4cb50f1029af0032163274db0b86CAS |

Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant, Cell & Environment 27, 1405–1414.
A critical analysis of the causes of boron toxicity in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhs1OqtQ%3D%3D&md5=f4aa907065134bc86860bc348b0f04f2CAS |

Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M, Collins NC (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait. Journal of Experimental Botany 62, 1201–1216.
A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na+ exclusion trait.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVektLo%3D&md5=886b57815676b184fa0180b445e451bdCAS |

Schnurbusch T, Collins NC, Eastwood RF, Sutton T, Jefferies SP, Langridge P (2007) Fine mapping and targeted SNP survey using rice–wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theoretical and Applied Genetics 115, 451–461.
Fine mapping and targeted SNP survey using rice–wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXosFamtrc%3D&md5=c864678106f39d0bb9fee4d67000319bCAS |

Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiology 153, 1706–1715.
Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVCrsr%2FF&md5=1cdcc7e7e0a82ecee1a54bf9688632a7CAS |

Sutton T, Baumann U, Hayes J, Collins NC, Shi BJ, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318, 1446–1449.
Boron-toxicity tolerance in barley arising from efflux transporter amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGmtLnL&md5=ad0f5ec14382e7ee9daf538d035bc40aCAS |

Takahashi E, Syo S, Miyake Y (1976) Effect of germanium on the growth of plants with special reference to the silicon nutrition (parts 1–3). Journal of the Science of Soil and Manure, Japan 47, 183–190.

Takano J, Noguchi K, Yasunori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420, 337–340.
Arabidopsis boron transporter for xylem loading.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovVekt7k%3D&md5=0bbdffe0275788e56ad727373cabf658CAS |

Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell 18, 1498–1509.
The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation.Crossref | GoogleScholarGoogle Scholar |

Wallace IS, Roberts DM (2005) Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry 44, 16826–16834.
Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1GktLzP&md5=0c5f97e9601434e2cd5c7868fe5f57ccCAS |

Wu YX, von Tiedemann A (2004) Light-dependent oxidative stress determines physiological leaf spot formation in barley. Phytopathology 94, 584–592.
Light-dependent oxidative stress determines physiological leaf spot formation in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltFynurg%3D&md5=880ab5784849fc0e2d59ec07043c1e76CAS |