CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>        Online Early    

Brachypodium distachyon: a model species for aluminium tolerance in Poaceae

Roberto Contreras A , Ana M. Figueiras A , Francisco J. Gallego A and Cesar Benito A B

A Departamento de Genética, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain.
B Corresponding author. Email: cebe8183@bio.ucm.es

Functional Plant Biology - http://dx.doi.org/10.1071/FP13362
Submitted: 18 December 2013  Accepted: 31 May 2014   Published online: 29 July 2014


 
PDF (1 MB) $25
 Supplementary Material
 Export Citation
 Print
  
Abstract

Aluminium (Al) toxicity is the main abiotic stress limiting plant productivity in acidic soils. Studies on Al tolerance have been conducted in Poaceae but their genomes are very complex. Fifty-nine diploid lines (2n = 10) of Brachypodium distachyon (L.) P. Beauv. and 37 allotetraploid samples (2n = 30) of Brachypodium hybridum Catalán, Joch. Müll., Hasterok & Jenkins sp. nov. were used to evaluate their tolerance to different Al concentrations. B. distachyon is Al-sensitive compared with oat, rice and rye. The diploid lines (except ABR8) were sensitive like barley and Arabidopsis; however, 10 allotetraploid samples were Al-tolerant. Four different root-staining methods were used to detect Al accumulation, cell death, lipid peroxidation and H2O2 production in diploid and allotetraploid plants. The roots treated with Al showed more intense staining in sensitive than tolerant lines. Also, without any staining, the Al treated roots of sensitive plants appear darker than roots from tolerant ones. The study concerning to the organic acids exudation shows that the exudation of citrate and malate was induced only in the roots from tolerant diploid line (ABR8) and tolerant allotetraploid samples. In contrast, the mRNA expression changes of several candidate genes for Al-activated transporters belonging to the ALMT and MATE families were analysed by quantitative PCR (qRT–PCR). The data obtained indicate that the transcripts from BdALMT1, BdMATE1 and BdMATE2 were present mainly in roots and, moreover, that the BdALMT1 transcript is present in higher amounts in the tolerant ABR8 than in the sensitive ABR1 plants indicating that this gene may be involved in Al tolerance. Finally, an insertion was detected in the promoter region of the BdALMT1 of tolerant diploid and allotetraploid plants.

Additional keywords: aluminium tolerance, candidate genes, model plant, Poaceae.


References

Achary VMM, Jena S, Panda KK, Panda BB (2008) Aluminum induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicology and Environmental Safety 70, 300–310.
CrossRef | CAS |

Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye and triticale. Canadian Journal of Genetics and Cytology 26, 701–705.

Camargo CEO, Felício JC (1984) Tolerância de cultivares de trigo, triticale e centeio em diferentes níveis de alumínio em solução nutritiva. Bragantia 43, 9–16.
CrossRef | CAS |

Cançado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borém A, Lopes MA (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theoretical and Applied Genetics 99, 747–754.
CrossRef |

Catalán P, Müller J, Hasterok R, Jenkins G, Mur LAJ, Langdon T, Betekhtin A, Siwinska D, Pimentel M, López-Álvarez D (2012) Evolution and taxonomic split of the model grass Brachypodium distachyon. Annals of Botany 109, 385–405.
CrossRef | PubMed |

Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179, 669–682.
CrossRef | CAS | PubMed |

Dagley S (1974) Citrate: UV spectrophotometer determination. In ‘Methods of enzymatic analysis’. (Eds HU Bergmeyer, K Gawehn) pp. 1562–1565. (Academic Press: New York)

Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiology 107, 315–321.

Delhaize E, Ryan PR, Randall PJ (1993) Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminum-stimulated excretion of malic-acid from root apices. Plant Physiology 103, 695–702.

Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America 101, 15 249–15 254.
CrossRef | CAS |

Delhaize E, James RA, Ryan PR (2012) Aluminum tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. New Phytologist 195, 609–619.
CrossRef | CAS | PubMed |

Devi SR, Yamamoto Y, Matsumoto H (2003) An intracellular mechanism of aluminum tolerance associated with high antioxidant status in cultured tobacco cells. Journal of Inorganic Biochemistry 97, 59–68.
CrossRef | CAS | PubMed |

Famoso AN, Clark RT, Shaff JE, Craft E, McCouch SR, Kochian LV (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiology 153, 1678–1691.
CrossRef | CAS | PubMed |

Fontecha G, Silva-Navas J, Benito C, Mestres MA, Espino FJ, Hernández Riquer MV, Gallego FJ (2007) Candidate gene identification of an aluminum-activated organic acid transporter gene at the alt4 locus for aluminum tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics 114, 249–260.
CrossRef | CAS | PubMed |

Foy CD (1988) Plant adaptation to acid aluminum-toxic soils. Communications in Soil Science and Plant Analysis 19, 959–987.
CrossRef | CAS |

Foy CD, Lee EH, Coradetti CA, Taylor GJ (1990) Organic acids related to differential aluminum tolerance in wheat (Triticum aestivum) cultivars. In ‘Plant nutrition – physiology and applications’. (Ed. Zn ML van Beusichem) pp. 381–389. (Kluwer Academic Publishers: Dordrecht, The Netherlands)

Fujii M, Yokosho K, Yamaji N, Saisho D, Yamane M, Takahashi H, Sato K, Nakazono M, Maa JF (2012) Acquisition of aluminium tolerance by modification of a single gene in barley. Nature Communications 3, 713–721.
CrossRef | PubMed |

Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant & Cell Physiology 48, 1081–1091.
CrossRef | CAS |

Gallego FJ, Benito C (1997) Genetic control of aluminium tolerance in rye (Secale cereale L.). Theoretical and Applied Genetics 95, 393–399.
CrossRef | CAS |

Garvin DF, Gu Y-Q, Hasterok R, Hazen SP, Jenkins G, Mockler TC, Mur LAJ, Vogel JP (2008) Development of genetic and genomic research resources for Brachypodium distachyon, a new model system for grass crop research. Crop Science 48, S69–S84.
CrossRef |

Gutmann I, Wahlefeld AW (1974). L-malate: determination with malate dehydrogenase and NAD. In ‘Methods of enzymatic analysis’. (Eds HU Bergmeyer, K Gawehn) pp. 1585–1589. (Academic Press: New York)

Hoekenga OA, Maron LG, Piñeros MA, Cancado GMA, Shaff J, Kobayashi Y, Ryan PR, Dong B, Delhaize E, Sasaki T, Matsumoto H, Yamamoto Y, Koyama H, Kochian LV (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 103, 9738–9743.
CrossRef | CAS | PubMed |

Horst WJ, Asher CJ, Cakmak I, Szulkiewica P, Wissemeier AH (1992) Short-term responses on soybean roots to aluminum. Journal of Plant Physiology 140, 174–178.
CrossRef | CAS |

Iuchi S, Koyama H, Iuchi A, Kobayashi Y, Kitabayashi S, Kobayashi Y, Ikka T, Hirayama T, Shinozaki K, Kobayashi M (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proceedings of the National Academy of Sciences of the United States of America 104, 9900–9905.
CrossRef | PubMed |

Jones DL, Blacaflor EB, Kochian LV, Gilroy S (2006) Spatial coordination of aluminum uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots. Plant, Cell & Environment 29, 1309–1318.
CrossRef | CAS |

Kim BY, Baier AC, Somers DJ, Gustafson JP (2001) Aluminum tolerance in triticale, wheat, and rye. Euphytica 120, 329–337.
CrossRef | CAS |

Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant and Soil 274, 175–195.
CrossRef | CAS |

Larsen PB, Tai CY, Kochian LV, Howell SH (1996) Arabidopsis mutants with increased sensitivity to aluminum. Plant Physiology 110, 743–751.
CrossRef | CAS | PubMed |

Li XF, Ma JF, Matsumoto HPC (2000) Pattern of aluminum induced secretion of organic acids differs between rye and wheat. Plant Physiology 123, 1537–1544.
CrossRef | CAS | PubMed |

Lisch D (2013) How important are the transposons for plant evolution? Nature Reviews Genetics 14, 49–61.
CrossRef | CAS | PubMed |

Liu J, Magalhaes JV, Shaff J, Kochian LV (2009) Aluminum activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. The Plant Journal 57, 389–399.
CrossRef | CAS | PubMed |

Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a mini review. Journal of Inorganic Biochemistry 97, 46–51.
CrossRef | CAS | PubMed |

Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying aluminum with buckwheat. Nature 390, 569–570.
CrossRef |

Ma JF, Taketa S, Yang ZM (2000) Aluminum tolerance genes on the short arm of chromosome 3R are linked to organic acid release in triticale. Plant Physiology 122, 687–694.
CrossRef | CAS | PubMed |

Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Piñeros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics 39, 1156–1161.
CrossRef | CAS | PubMed |

Manzaneda AJ, Rey PJ, Bastida JM, Weiss-Lehman T, Raskin E, Mitchell-Olds T (2012) Environmental aridity is associated with cytotype segregation and polyploidy occurrence in Brachypodium distachyon (Poaceae). New Phytologist 193, 797–805.
CrossRef | PubMed |

Maron LG, Piñeros MA, Guimaraes CT, Magalhaes J, Pleiman JK, Mao C, Shaff J, Belicuas SNJ, Kochian LV (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporter potentially underlie two major aluminum tolerance QTLs in maize. The Plant Journal 61, 728–740.
CrossRef | CAS | PubMed |

Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminium tolerance in snapbeans – root exudation of citric-acid. Plant Physiology 96, 737–743.
CrossRef | CAS | PubMed |

Mugwira LM, Elgawhary SM, Patel KI (1976) Differential tolerances of triticale, wheat, rye, and barley to aluminum in nutrient solution. Agronomy Journal 68, 782–787.
CrossRef | CAS |

Mur LAJ, Allainguillaume J, Catalán P, Hasterok R, Jenkins G, Lesniewska K, Thomas I, Vogel J (2011) Exploiting the Brachypodium tool box in cereal and grass research. New Phytologist 191, 334–347.
CrossRef |

Oliveira PH, Federizzi LC, Kothe Milach SC, Gotuzzo C, Sawasato JT (2005) Inheritance in oat (Avena sativa L.) of tolerance to soil aluminum toxicity. Crop Breeding and Applied Biotechnology 5, 302–309.
CrossRef |

Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196, 788–795.
CrossRef | CAS |

Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance in wheat by hematoxylin staining of seedling roots. Crop Science 18, 823–827.
CrossRef | CAS |

Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminum-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48, 781–791.
CrossRef | CAS | PubMed |

Ryan PR, Raman H, Gupta S, Horst WJ, Delhaize E (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiology 149, 340–351.
CrossRef | CAS | PubMed |

Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37, 645–653.
CrossRef | CAS | PubMed |

Silva-Navas J, Benito C, Téllez-Robledo B, Abd El-Moneim D, Gallego FJ (2012) The ScAACT1 gene at the Qalt5 locus as a candidate for increased aluminum tolerance in rye (Secale cereale L.). Molecular Breeding 30, 845–856.
CrossRef | CAS |

Tahara K, Yamanoshita T, Norisada M, Hasegawa I, Kashima H, Sasaki S, Kojima K (2008) Aluminum distribution and reactive oxygen species accumulation in root tips of two Melaleuca trees differing in aluminum resistance. Plant and Soil 307, 167–178.
CrossRef | CAS |

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA 6: molecular evolutionary genetics analysis version 6. Molecular Biology and Evolution 30, 2725–2729.
CrossRef | CAS | PubMed |

Tice KR, Parker DR, Demason DA (1992) Operationally defined apoplastic and symplastic aluminum fractions in root tips of aluminum-intoxicated wheat. Plant Physiology 100, 309–318.
CrossRef | CAS | PubMed |

Tovkach A, Ryan PR, Richardson AE, Lewis DC, Rathjen TM, Ramesh S, Tyerman SD, Delhaize E (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiology 161, 880–892.
CrossRef | CAS | PubMed |

Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant and Soil 171, 1–15.
CrossRef |

Wang J, Raman H, Zhou M, Ryan PR, Delhaize E, Hebb DM, Coombes N, Mendham N (2007) High-resolution mapping of the Alp locus and identification of a candidate gene HvMATE controlling aluminium tolerance in barley (Hordeum vulgare L.). Theoretical and Applied Genetics 115, 265–276.
CrossRef | CAS | PubMed |

Yamamoto Y, Yukiko Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology 125, 199–208.
CrossRef | CAS | PubMed |

Yamamoto Y, Kobayashi Y, Devi SR, Rikiishi S, Matsumoto H (2002) Aluminum toxicity is associated with mitochondrial dysfunction and the production of reactive oxygen species in plant cells. Plant Physiology 128, 63–72.
CrossRef | CAS | PubMed |

Yang XY, Yang JL, Zhou Y, Piñeros MA, Kochian LV, Li GX, Zheng SJ (2011) A de novo synthesis citrate transporter, Vigna umbellata multidrug and toxic compound extrusion, implicates in Al-activated citrate efflux in rice bean (Vigna umbellata) root apex. Plant, Cell & Environment 34, 2138–2148.
CrossRef | CAS |

Yokosho K, Yamaji N, Ma JF (2010) Isolation and characterization of two MATE genes in rye. Functional Plant Biology 37, 296–303.
CrossRef | CAS |

Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. The Plant Journal 68, 1061–1069.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014