CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 41(12)

Photoperiodic variations induce shifts in the leaf metabolic profile of Chrysanthemum morifolium

Katrine Heinsvig Kjaer A C, Morten Rahr Clausen A, Ulrik Kræmer Sundekilde A, Bent Ole Petersen B, Hanne Christine Bertram A and Carl-Otto Ottosen A

A Aarhus University, Kirstinebjergvej 10, 5792 Aarslev, Denmark.
B Carlsberg Laboratory, Gamle Carlsberg vej 10, 1799 Copenhagen V, Denmark.
C Corresponding author. Email: katrine.kjaer@agrsci.dk

Functional Plant Biology 41(12) 1310-1322 http://dx.doi.org/10.1071/FP14012
Submitted: 9 January 2014  Accepted: 9 June 2014   Published: 20 August 2014

PDF (900 KB) $25
 Export Citation

Plants have a high ability to adjust their metabolism, growth and development to changes in the light environment and to photoperiodic variation, but the current knowledge on how changes in metabolite contents are associated with growth and development is limited. We investigated the effect of three different photoperiodic treatments with similar daily light integral (DLI) on the growth responses and diurnal patterns in detected leaf metabolites in the short day plant Chrysanthemum × morifolium Ramat. Treatments were long day (LD, 18 h light/6 h dark), short day (SD, 12 h light/12 h dark) and short day with irregular night interruptions (NI-SD,12 h light/12 h dark, applied in a weekly pattern, shifting from day-to-day). Photoperiodic variation resulted in changes in the phenotypic development of the plants. The plants grown in the SD treatment started to initiate reproductive development of the meristems and a decrease in leaf expansion resulted in lower leaf area of expanding leaves. In contrast, plants in the NI-SD and LD treatments did not show reproductive development at any stage and final leaf area of the expanding leaves was intermediate for the NI-SD plants and largest for the LD plants. Photoperiodic variation also resulted in changes in the leaf metabolic profile for most of the analysed metabolites, but only carbohydrates, citrate and some amino acids displayed a shift in their diurnal pattern. Further, our results illustrated that short days (SD) increased the diurnal turnover of 1-kestose after 2 weeks, and decreased the overall contents of leaf hexoses after 3 weeks. In the two other treatments a diurnal turnover of 1-kestose was not stimulated before after 3 weeks, and hexoses together with the hexose : sucrose ratio steadily increased during the experiment. Our results enlighten the plasticity of leaf growth and metabolism to environmental changes, and demonstrate that diurnally regulated metabolites not always respond to photoperiodic variation.

Additional keywords: daylength, diurnal regulation, flowering, invertase, inulin-type fructan, leaf expansion, maltose, respiration, 1H-NMR spectroscopy.


Adachi M, Kawabata S, Sakiyama R (1999) Changes in carbohydrate content in cut chrysanthemum (Dendranthema X grandiflorium (Ramat.) Kitamura) ‘Shuho-no-chikara’ stems kept at different temperatures during anthesis and senescence. Journal of the Japanese Society for Horticultural Science 68, 505–512.
CrossRef | CAS |

Adams SR, Langton FA (2005) Photoperiod and plant growth: a review. Journal of Horticultural Science & Biotechnology 80, 2–10.

Apolinário AC, Goulart de Lima Damasceno BP, de Macêdo Beltrão NE, Pessoa A, Converti A, da Silva JA (2014) Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers 101, 368–378.
CrossRef | PubMed |

Bieleski R (1993) Fructan hydrolysis drives petal expansion in the ephemeral daylily flower. Plant Physiology 103, 213–219.

Bolouri Moghaddam MR, Van den Ende W (2013) Sugars, the clock and transition to flowering. Frontiers in Plant Science 4, 22
CrossRef | CAS | PubMed |

Carvalho SMP, Heuvelink E (2001) Influence of greenhouse climate and plant density on external quality of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura): first steps towards a quality model. Journal of Horticultural Science & Biotechnology 76, 249–258.

Chatterton NJ, Silvius JE (1980) Photosynthate partitioning into leaf starch as affected by daily photosynthetic period duration in 6 species. Physiologia Plantarum 49, 141–144.
CrossRef |

Cockshull KE (1976) Flower and leaf initiation by Chrysanthemum-morifolium Ramat. in long days. Journal of Horticultural Science 51, 441–450.

Cookson SJ, Granier C (2006) A dynamic analysis of the shade-induced plasticity in Arabidopsis thaliana rosette leaf development reveals new components of the shade-adaptative response. Annals of Botany 97, 443–452.
CrossRef | PubMed |

Cookson SJ, Chenu K, Granier C (2007) Day length affects the dynamics of leaf expansion and cellular development in Arabidopsis thaliana partially through floral transition timing. Annals of Botany 99, 703–711.
CrossRef | PubMed |

Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206, 131–137.
CrossRef | CAS | PubMed |

Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633.
CrossRef | CAS | PubMed |

Druege U, Zerche S, Kadner R, Ernst M (2000) Relation between nitrogen status, carbohydrate distribution and subsequent rooting of chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Annals of Botany 85, 687–701.
CrossRef | CAS |

Edwards KD, Akman OE, Knox K, Lumsden PJ, Thomson AW, Brown PE, Pokhilko A, Kozma-Bognar L, Nagy F, Rand DA, Millar AJ (2010) Quantitative analysis of regulatory flexibility under changing environmental conditions. Molecular Systems Biology 6, 424
CrossRef | PubMed |

Fukushima A, Kusano M, Nakamichi N, Kobayashi M, Hayashi N, Sakakibara H, Mizuno T, Saito K (2009) Impact of clock-associated Arabidopsis pseudo-response regulators in metabolic coordination. Proceedings of the National Academy of Sciences of the United States of America 106, 7251–7256.
CrossRef | CAS | PubMed |

Giuliano G, Hoffman NE, Ko K, Scolnik PA, Cashmore AR (1988) A light-entrained circadian clock controls transcription of several plant genes. The EMBO Journal 7, 3635–3642.

González MC, Roitsch T, Cejudo FJ (2005) Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. Planta 222, 386–395.
CrossRef | PubMed |

Graf A, Schlereth A, Stitt M, Smith AM (2010) Circadian control of carbohydrate availability for growth in Arabidopsis plants at night. Proceedings of the National Academy of Sciences of the United States of America 107, 9458–9463.
CrossRef | CAS | PubMed |

Gravot A, Dittami SM, Rousvoal S, Lugan R, Eggert A, Collen J, Boyen C, Bouchereau A, Tonon T (2010) Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. New Phytologist 188, 98–110.
CrossRef | CAS | PubMed |

Haydon MJ, Bell LJ, Webb AA (2011) Interactions between plant circadian clocks and solute transport. Journal of Experimental Botany 62, 2333–2348.
CrossRef | CAS | PubMed |

Hoffman DE, Jonsson P, Bylesjo M, Trygg J, Antti H, Eriksson ME, Moritz T (2010) Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation. Plant, Cell & Environment 33, 1298–1313.

King RW, Hisamatsu T, Goldschmidt EE, Blundell C (2008) The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). Journal of Experimental Botany 59, 3811–3820.
CrossRef | CAS | PubMed |

Kjaer KH, Ottosen CO (2011) Growth of Chrysanthemum in response to supplemental light provided by irregular light breaks during the night. Journal of the American Society for Horticultural Science 136, 3–9.

Kjaer KH, Poire R, Ottosen CO, Walter A (2012) Rapid adjustment in Chrysanthemum carbohydrate turnover and growth activity to a change in time-of-day application of light and daylength. Functional Plant Biology 39, 639–649.
CrossRef | CAS |

Langton FA (1992) Interrupted lighting of chrysanthemums: monitoring of average daily light integral as an aid to timing. Scientia Horticulturae 49, 147–157.
CrossRef |

Le Roy K, Vergauwen R, Cammaer V, Yoshida M, Kawakami A, Van Laere A, Van den Ende W (2007) Fructan 1-exohydrolase is associated with flower opening in Campanula rapunculoides. Functional Plant Biology 34, 972–983.
CrossRef | CAS |

Livingston DP, Premakumar R, Tallury SP (2006) Carbohydrate partitioning between upper and lower regions of the crown in oat and rye during cold acclimation and freezing. Cryobiology 52, 200–208.
CrossRef | CAS | PubMed |

Lockhart JA (1965) An analysis of irreversible plant cell elongation. Journal of Theoretical Biology 8, 264–275.
CrossRef | CAS | PubMed |

Lorenzen JH, Ewing EE (1992) Starch accumulation in leaves of potato (Solanum-tuberosum L.) during the 1st 18 days of photoperiod treatment. Annals of Botany 69, 481–485.

Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiology 138, 2280–2291.
CrossRef | CAS | PubMed |

Mattson NS, Erwin JE (2005) The impact of photoperiod and irradiance on flowering of several herbaceous ornamentals. Scientia Horticulturae 104, 275–292.
CrossRef |

Niedziela CE, Nelson PV, Peet MM, Jackson WA (1993) Diurnal malate and citrate fluctuations as related to nitrate and potassium concentrations in tomato leaves. Journal of Plant Nutrition 16, 165–175.
CrossRef | CAS |

Nishida K (1962) Effects of internal and external factors on photosynthetic 14CO2 fixation in general and on formation of 14C-Maltose in Acer leaf in particular. Physiologia Plantarum 15, 47–58.
CrossRef | CAS |

Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. Journal of Experimental Botany 63, 1461–1477.
CrossRef | CAS | PubMed |

Pantin F, Simonneau T, Rolland G, Dauzat M, Muller B (2011) Control of leaf expansion: a developmental switch from metabolics to hydraulics. Plant Physiology 156, 803–815.
CrossRef | CAS | PubMed |

Poorter H, Niinemets U, Poorter L, Wright I, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182, 565–588.
CrossRef | PubMed |

Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends in Plant Science 9, 606–613.
CrossRef | CAS | PubMed |

Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A (2012) Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana. The Plant Journal 72, 154–161.
CrossRef | CAS | PubMed |

Savorani F, Tomasi G, Engelsen SB (2010) Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. Journal of Magnetic Resonance 202, 190–202.
CrossRef | CAS | PubMed |

Schilling N (1982) Characterization of maltose biosynthesis from alpha-D-glucose-1-phosphate in Spinacia-oleracea l. Planta 154, 87–93.
CrossRef | CAS | PubMed |

Sicher RC (2008) Effects of CO2 enrichment on soluble amino acids and organic acids in barley primary leaves as a function of age, photoperiod and chlorosis. Plant Science 174, 576–582.
CrossRef | CAS |

Stuart NV (1943) Controlling time of blooming of chrysanthemums by the use of lights. Proceedings of the American Society for Horticultural Science 42, 605–606.

Troein C, Corellou F, Dixon LE, van Ooijen G, O’Neill JS, Bouget FY, Millar AJ (2011) Multiple light inputs to a simple clock circuit allow complex biological rhythms. The Plant Journal 66, 375–385.
CrossRef | CAS | PubMed |

Trusty SE, Miller WB (1991) Postproduction carbohydrate-levels in pot chrysanthemums. Journal of the American Society for Horticultural Science 116, 1013–1018.

Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Wenger RK, Yao H, Markley JL (2008) BioMagResBank. Nucleic Acids Research 36, D402–D408.
CrossRef | CAS | PubMed |

Van den Ende W (2013) Multifunctional fructans and raffinose family oligosaccharides. Frontiers in Plant Science 4, 247
CrossRef |

Vergauwen R, van der Ende W, van Laere A (2000) The role of fructan in flowering of Campanula rapunculoides. Journal of Experimental Botany 51, 1261–1266.
CrossRef | CAS | PubMed |

Wang L, Li XR, Lian H, Ni DA, He YK, Chen XY, Ruan YL (2010) Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiology 154, 744–756.
CrossRef | CAS | PubMed |

Weber H, Borisjuk L, Heim U, Buchner P, Wohus U (1995) Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. The Plant Cell 7, 1835–1846.

Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau D, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, MacInnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L (2007) HMDB: the human metabolome database. Nucleic Acids Research 35, D521–D526.
CrossRef | CAS | PubMed |

Xiang L, Le Roy K, Bolouri-Moghaddam MR, Vanhaecke M, Lammens W, Rolland F, Van den Ende W (2011) Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. Journal of Experimental Botany 62, 3849–3862.
CrossRef | CAS | PubMed |

Zeeman SC, Smith SM, Smith AM (2004) The breakdown of starch in leaves. New Phytologist 163, 247–261.
CrossRef | CAS |

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016