Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Is the Australian subterranean fauna uniquely diverse?

Michelle T. Guzik A G , Andrew D. Austin A , Steven J. B. Cooper A B , Mark S. Harvey C , William F. Humphreys C , Tessa Bradford A , Stefan M. Eberhard D , Rachael A. King A B , Remko Leys B E , Kate A. Muirhead A and Moya Tomlinson F
+ Author Affiliations
- Author Affiliations

A Australian Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, SA 5005, Australia.

B South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C Western Australian Museum, Collections and Research Centre, Locked Bag 49, Welshpool DC, WA 6986, Australia.

D Subterranean Ecology Pty Ltd, 8/37 Cedric St, Stirling, WA 6021, Australia.

E School of Biological Sciences, Flinders University, SA 5042, Australia.

F Department of Environment and Resource Management, GPO Box 2454, Brisbane, Qld 4001, Australia.

G Corresponding author. Email: michelle.guzik@adelaide.edu.au

Invertebrate Systematics 24(5) 407-418 https://doi.org/10.1071/IS10038
Submitted: 5 November 2010  Accepted: 8 January 2011   Published: 4 March 2011

Abstract

Australia was historically considered a poor prospect for subterranean fauna but, in reality, the continent holds a great variety of subterranean habitats, with associated faunas, found both in karst and non-karst environments. This paper critically examines the diversity of subterranean fauna in several key regions for the mostly arid western half of Australia. We aimed to document levels of species richness for major taxon groups and examine the degree of uniqueness of the fauna. We also wanted to compare the composition of these ecosystems, and their origins, with other regions of subterranean diversity world-wide. Using information on the number of ‘described’ and ‘known’ invertebrate species (recognised based on morphological and/or molecular data), we predict that the total subterranean fauna for the western half of the continent is 4140 species, of which ~10% is described and 9% is ‘known’ but not yet described. The stygofauna, water beetles, ostracods and copepods have the largest number of described species, while arachnids dominate the described troglofauna. Conversely, copepods, water beetles and isopods are the poorest known groups with less than 20% described species, while hexapods (comprising mostly Collembola, Coleoptera, Blattodea and Hemiptera) are the least known of the troglofauna. Compared with other regions of the world, we consider the Australian subterranean fauna to be unique in its diversity compared with the northern hemisphere for three key reasons: the range and diversity of subterranean habitats is both extensive and novel; direct faunal links to ancient Pangaea and Gondwana are evident, emphasising their early biogeographic history; and Miocene aridification, rather than Pleistocene post-ice age driven diversification events (as is predicted in the northern hemisphere), are likely to have dominated Australia’s subterranean speciation explosion. Finally, we predict that the geologically younger, although more poorly studied, eastern half of the Australian continent is unlikely to be as diverse as the western half, except for stygofauna in porous media. Furthermore, based on similar geology, palaeogeography and tectonic history to that seen in the western parts of Australia, southern Africa, parts of South America and India may also yield similar subterranean biodiversity to that described here.


References

Barr, T. C. (1973). Refugees of the ice age. Natural History 26, 26–35.

Barranco, P., and Harvey, M. S. (2008). The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae). Invertebrate Systematics 22, 227–233.
The first indigenous palpigrade from Australia: a new species of Eukoenenia (Palpigradi: Eukoeneniidae).Crossref | GoogleScholarGoogle Scholar |

Bichuette, M. E., and Trajano, E. (2005). A new cave species of Rhamdia (Siluriformes: Heptapteridae) from Serra do Ramalho, northeastern Brazil, with notes on ecology and behavior. Neotropical Ichthyology 3, 587–595.
A new cave species of Rhamdia (Siluriformes: Heptapteridae) from Serra do Ramalho, northeastern Brazil, with notes on ecology and behavior.Crossref | GoogleScholarGoogle Scholar |

Boulton, A. J. (2009). Recent progress in the conservation of groundwaters and their dependent ecosystems. Aquatic Conservation. Marine and Freshwater Ecosystems 19, 731–735.
Recent progress in the conservation of groundwaters and their dependent ecosystems. Aquatic Conservation.Crossref | GoogleScholarGoogle Scholar |

Boutin, C. (1994). Stygobiology and historical geology: the age of Fuerteventura (Canary Islands) as inferred from its present stygofauna. Bulletin de la Société Géologique de France 165, 273–285.

Bradbury, J. H. (1999). The systematics and distribution of Australian freshwater amphipods: a review. In ‘Proceedings of the Fourth International Crustacean Congress, Amsterdam, The Netherlands’. (Eds F. R. Schram and J. C. von Vaupel Klein.) pp. 533–540. (Brill: Leiden.)

Bradbury, J. H., and Eberhard, S. (2000). A new stygobiont melitid amphipod from the Nullarbor Plain. Records of the Western Australian Museum 20, 39–50.

Bradbury, J. H., and Williams, W. D. (1997a). Amphipod (Crustacea) diversity in underground waters in Australia: an Aladdin’s Cave. Memoirs of Museum Victoria 56, 513–519.

Bradbury, J. H., and Williams, W. D. (1997b). The amphipod (Crustacea) stygofauna of Australia: description of new taxa (Melitidae, Neoniphargidae, Paramelitidae), and a synopsis of known species. Records of the Australian Museum 49, 249–341.
The amphipod (Crustacea) stygofauna of Australia: description of new taxa (Melitidae, Neoniphargidae, Paramelitidae), and a synopsis of known species.Crossref | GoogleScholarGoogle Scholar |

Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., and Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources 10, 41–50.
DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ans7k%3D&md5=ad9b543ceacbacf9d3013968b102e199CAS |

Brooks, T. M., Mittermeier, R. A., da Fonseca, G. A. B., Gerlach, J., Hoffmann, M., Lamoreux, J. F., Mittermeier, C. G., Pilgrim, J. D., and Rodrigues, A. S. L. (2006). Global biodiversity conservation priorities. Science 313, 58–61.
Global biodiversity conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmsFWisLg%3D&md5=973630903d639765adc2cb8d8662533cCAS | 16825561PubMed |

Bruce, N. L. (2008). New species and a new genus of Cirolanidae (Isopod: Cymothoida: Crustacea) from groundwater in calcretes in the Pilbarra [sic.], northern Western Australia. Zootaxa 1823, 51–64.

Bruce, N. L., and Humphreys, W. F. (1993). Haptolana pholeta, sp. nov., the first subterranean flabelliferan isopod crustacean (Cirolanidae) from Australia. Invertebrate Taxonomy 7, 875–884.
Haptolana pholeta, sp. nov., the first subterranean flabelliferan isopod crustacean (Cirolanidae) from Australia.Crossref | GoogleScholarGoogle Scholar |

Buhay, J. E., and Crandall, K. A. (2005). Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes. Molecular Ecology 14, 4259–4273.
Subterranean phylogeography of freshwater crayfishes shows extensive gene flow and surprisingly large population sizes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvFahsA%3D%3D&md5=abea11642e695f3d190ddc60a95fe17cCAS | 16313591PubMed |

Buhay, J. E., Moni, G., Mann, N., and Crandall, K. A. (2007). Molecular taxonomy in the dark: evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus. Molecular Phylogenetics and Evolution 42, 435–448.
Molecular taxonomy in the dark: evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1CgsbjF&md5=bab17c0ac2274affbb5aca6553bad794CAS | 16971141PubMed |

Burger, M., Harvey, M. S., and Stevens, N. (2010). A new species of blind subterranean Tetrablemma (Araneae: Tetrablemmidae) from Australia. The Journal of Arachnology 38, 146–149.
A new species of blind subterranean Tetrablemma (Araneae: Tetrablemmidae) from Australia.Crossref | GoogleScholarGoogle Scholar |

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A., Cooper, S. J. B., Donnellan, S. C., Keogh, J. S., Leys, R., Melville, J., Murphy, D. J., Porch, N., and Wyrwoll, K. H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=2bb4d789a88b0bd02263023fa38a4f00CAS | 18761619PubMed |

Camacho, A. I., and Hancock, P. J. (2010). A new genus of Parabathynellidae (Crustacea: Bathynellacea) in New South Wales, Australia. Journal of Natural History 44, 1081–1094.
A new genus of Parabathynellidae (Crustacea: Bathynellacea) in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Cho, J.-L. (2005). A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn Craton of Western Australia. Journal of Natural History 39, 3423–3433.
A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn Craton of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cho, J.-L., and Humphreys, W. F. (2010). Ten new species of the genus Brevisomabathynella Cho, Park and Ranga Reddy, 2006 (Malacostraca, Bathynellacea, Parabathynellidae) from Western Australia. Journal of Natural History 44, 993–1079.
Ten new species of the genus Brevisomabathynella Cho, Park and Ranga Reddy, 2006 (Malacostraca, Bathynellacea, Parabathynellidae) from Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cho, J.-L., Park, J.-G., and Humphreys, W. F. (2005). A new genus and six new species of the Parabathynellidae (Bathynellacea, Syncarida) from the Kimberley Region, Western Australia. Journal of Natural History 39, 2225–2255.

Cho, J.-L., Park, J.-G., and Ranga Reddy, Y. (2006a). Brevisomabathynella gen. nov. with two new species from Western Australia (Bathynellacea, Syncarida): the first definitive evidence of predation in Parabathynellidae. Zootaxa 1247, 25–42.

Cho, J.-L., Humphreys, W. F., and Lee, S.-D. (2006b). Phylogenetic relationships within the genus Atopobathynella Schminke (Bathynellacea: Parabathynellidae). Invertebrate Systematics 20, 9–41.
Phylogenetic relationships within the genus Atopobathynella Schminke (Bathynellacea: Parabathynellidae).Crossref | GoogleScholarGoogle Scholar |

Christelis, G., and Struckmeier, W. (2001). ‘Groundwater in Namibia: An Explanation to the Hydrogeological Map.’ (Ministry of Agriculture Water and Rural Development: Windhoek, Namibia.)

Christman, M. C., and Culver, D. C. (2001). The relationship between cave biodiversity and available habitat. Journal of Biogeography 2, 367–380.

Christman, M. C., Culver, D. C., Madden, M. K., and White, D. (2005). Patterns of endemism of the eastern North American cave fauna. Journal of Biogeography 32, 1441–1452.
Patterns of endemism of the eastern North American cave fauna.Crossref | GoogleScholarGoogle Scholar |

Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., and Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology 16, 1533–1544.
Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlt1Gmu7w%3D&md5=c62979b56b10accce0e87007daf35d47CAS | 17391274PubMed |

Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Culver, D. C., and Sket, B. (2000). Hotspots of subterranean biodiversity in caves and wells. Journal of Caves and Karst Studies 62, 11–17.

Culver, D. C., and White, W. B. (Eds) (2004). ‘Encyclopedia of Caves.’ (Elsevier Academic Press: Amsterdam.)

Culver, D. C., Master, L. L., Christman, M. C., and Hobbs, H. H. (2000). Obligate cave fauna of the 48 contiguous United States. Conservation Biology 14, 386–401.
Obligate cave fauna of the 48 contiguous United States.Crossref | GoogleScholarGoogle Scholar |

Culver, D. C., Deharveng, L., Gibert, J., and Sasowsky, I. D. (Eds) (2001). ‘Mapping Subterranean Biodiversity: Cartographie de la Biodiversitè Souterraine.’ Special publication 6. (Karst Water Institute: Labaoratoire Souterraine: Moulis, France.)

Culver, D. C., Christman, M. C., Šereg, I., Trontelj, P., and Sket, B. (2004). The location of terrestrial species-rich caves in a cave-rich area. Subterranean Biology 2, 27–32.

Culver, D. C., Deharveng, L., Bedos, A., Lewis, J., Madden, M., Reddell, J. R., Sket, B., Trontelj, P., and White, D. (2006). The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29, 120–128.
The mid-latitude biodiversity ridge in terrestrial cave fauna.Crossref | GoogleScholarGoogle Scholar |

Deharveng, L. (2005). Diversity patterns in the tropics. In ‘Encyclopedia of Caves’. (Eds D. C. Culver and W. B. White.) pp. 166–170. (Elsevier/Academic Press: Burlington, MA.)

Derbyshire, E. (1972). Pleistocene glaciation of QF Tasmania: review and speculations. Australian Geographical Studies 10, 79–94.
Pleistocene glaciation of QF Tasmania: review and speculations.Crossref | GoogleScholarGoogle Scholar |

Desutter-Grandcolas, L. (1993). The cricket fauna of chiapanecan caves (Mexico): systematics, phylogeny and the evolution of troglobitic life (Orthoptera, Grylloidea, Phalangopsidae, Luzarinae). International Journal of Speleology 22, 1–82.

Eberhard, S. M. (1996). Tasmanian cave fauna. In ‘Encyclopedia Biospeologica Tome III’. (Eds C. Juberthie and V. Decu.) pp. 2093–2103. (Societe Internationale de Biospeleologie: Moulis (C. N. R. S.), France and Bucharest (Academia Románă), Romania.)

Eberhard, S. M., and Humphreys, W. F. (2003). The crawling, creeping and swimming life of caves. In ‘Beneath the Surface’. (Eds B. Finlayson and E. Hamilton-Smith.) pp. 127–147. (University of New South Wales Press: Sydney.)

Eberhard, S. M., Richardson, A. M., and Swain, R. (1991). The invertebrate cave fauna of Tasmania. Report to the National Estate Office, Canberra.

Eberhard, S. M., Halse, S. A., and Humphreys, W. F. (2005). Stygofauna in the Pilbara region, north-west Western Australia: a systematic review. Journal of the Royal Society of Western Australia 88, 167–176.

Eberhard, S. M., Halse, S. A., Williams, M. R., Scanlon, M. D., Cocking, J., and Barron, H. J. (2009). Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology 54, 885–901.
Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXltVOqurg%3D&md5=eae0a443b652843e1a7fff5dd170905fCAS |

Edgecombe, G. D. (2005). A troglomorphic species of the centipede Cryptops (Trigonocryptops) (Chilopoda: Scolopendromorpha) from Western Australia. Records of the Western Australian Museum 22, 315–323.

Edward, K. L., and Harvey, M. S. (2008). Short-range endemism in hypogean environments: the pseudoscorpion genera Tyrannochthonius and Lagynochthonius (Pseudoscorpiones: Chthoniidae) in the semiarid zone of Western Australia. Invertebrate Systematics 22, 259–293.
Short-range endemism in hypogean environments: the pseudoscorpion genera Tyrannochthonius and Lagynochthonius (Pseudoscorpiones: Chthoniidae) in the semiarid zone of Western Australia.Crossref | GoogleScholarGoogle Scholar |

EPA (2003). Consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Environmental Protection Authority, Perth.

Ferriera, R. L., and Horta, L. C. S. (2001). Natural and human impacts on invertebrate communities in Brazilian caves. Revista Brasileira de Biologia 61, 7–17.

Finston, T. L., and Johnson, M. S. (2004). Geographic patterns of genetic diversity in subterranean amphipods of the Pilbara, Western Australia. Marine and Freshwater Research 55, 619–628.
Geographic patterns of genetic diversity in subterranean amphipods of the Pilbara, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S., and Halse, S. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=7ae0ebf698f547f269e44511a7cafa14CAS | 17217350PubMed |

Finston, T. L., Francis, C. J., and Johnson, M. S. (2009). Biogeography of the stygobitic isopod Pygolabis (Malacostraca: Tainisopidae) in the Pilbara, Western Australia: evidence for multiple colonisations of the groundwater. Molecular Phylogenetics and Evolution 52, 448–460.
Biogeography of the stygobitic isopod Pygolabis (Malacostraca: Tainisopidae) in the Pilbara, Western Australia: evidence for multiple colonisations of the groundwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12hsbs%3D&md5=392fdb21f04929e5edda5b08b965cd48CAS | 19303454PubMed |

Fong, D. W., and Culver, D. C. (1994). Fine scale biogeographic differences in the crustacean fauna of a cave system in West Virginia, USA. Hydrobiologia 287, 29–37.
Fine scale biogeographic differences in the crustacean fauna of a cave system in West Virginia, USA.Crossref | GoogleScholarGoogle Scholar |

Gibert, J., Danielopol, D. L., and Stanford, J. A. (1994). ‘Groundwater Ecology.’ (Academic Press: London.)

Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., and Cho, J.-L. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 205–216.
Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., and Austin, A. D. (2009). Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia. Molecular Ecology 18, 3683–3698.
Fine-scale comparative phylogeography of a sympatric sister species triplet of subterranean diving beetles from a single calcrete aquifer in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhtrbM&md5=9b2439f26b60a797a271311fa9e129beCAS | 19674311PubMed |

Hamilton-Smith, E. (1967). The arthropoda of Australian caves. Journal of the Australian Entomological Society 6, 103–118.
The arthropoda of Australian caves.Crossref | GoogleScholarGoogle Scholar |

Hancock, P. J., and Boulton, A. J. (2008). Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invertebrate Systematics 22, 117–126.
Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S. (1998). Unusual new water mites (Acari: Hydracarina) from Australia, part 1. Records of the Western Australian Museum 19, 91–106.

Harvey, M. S. (2001). New cave-dwelling schizomids (Schizomida: Hubbardiidae) from Australia. Records of the Western Australian Museum 64, 171–185.

Harvey, M. S., and Edward, K. L. (2007). A review of the pseudoscorpion genus Ideoblothrus (Pseudoscorpiones, Syarinidae) from western and northern Australia. Journal of Natural History 41, 445–472.
A review of the pseudoscorpion genus Ideoblothrus (Pseudoscorpiones, Syarinidae) from western and northern Australia.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., and Humphreys, W. F. (1995). Notes on the genus Draculoides Harvey (Schizomida: Hubbardiidae), with the description of a new troglobitic species. Records of the Western Australian Museum 52, 183–189.

Harvey, M. S., and Leng, M. C. (2008a). Further observations on Ideoblothrus (Pseudoscorpiones: Syarinidae) from subterranean environments in Australia. Records of the Western Australian Museum 24, 379–386.

Harvey, M. S., and Leng, M. C. (2008b). The first troglomorphic pseudoscorpion of the family Olpiidae (Pseudoscorpiones), with remarks on the composition of the family. Records of the Western Australian Museum 24, 387–394.

Harvey, M. S., and Volschenk, E. S. (2007). The systematics of the Gondwanan pseudoscorpion family Hyidae (Pseudoscorpiones: Neobisioidea): new data and a revised phylogenetic hypothesis. Invertebrate Systematics 21, 365–406.
The systematics of the Gondwanan pseudoscorpion family Hyidae (Pseudoscorpiones: Neobisioidea): new data and a revised phylogenetic hypothesis.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebrate Systematics 22, 167–194.
Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslajsr8%3D&md5=21cec7432d015799786af7b7a053f51aCAS |

Hedin, M. C. (1997). Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling. Evolution 51, 1929–1945.
Speciational history in a diverse clade of habitat-specialized spiders (Araneae: Nesticidae: Nesticus): inferences from geographic-based sampling.Crossref | GoogleScholarGoogle Scholar |

Holsinger, J. R. (1992). Sternophysingidae, a new family of subterranean amphipods (Gammaridea: Crangonyctoidea) from South Africa, with description of Sternophysinx calceola, new species, and comments on phylogenetic and biogeographic relationships. Journal of Crustacean Biology 12, 111–124.
Sternophysingidae, a new family of subterranean amphipods (Gammaridea: Crangonyctoidea) from South Africa, with description of Sternophysinx calceola, new species, and comments on phylogenetic and biogeographic relationships.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (1999). Relict stygofaunas living in sea salt, karst and calcrete habitats in arid northwestern Australia contain many ancient lineages. In ‘The Other 99%: The Conservation and Biodiversity of Invertebrates’. (Eds W. Ponder and D. Lunney.) pp. 219–227. (Transactions of the Royal Zoological Society of New South Wales: Mosman.)

Humphreys, W. F. (2001). Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum 64, 63–83.

Humphreys, W. F. (2006). Aquifers: the ultimate groundwater dependent ecosystems. Australian Journal of Botany 54, 115–132.
Aquifers: the ultimate groundwater dependent ecosystems.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2008). Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22, 85–101.
Rising from down under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2009). Hydrogeology and groundwater ecology: does each inform the other? Hydrogeology 17, 5–21.
| 1:CAS:528:DC%2BD1MXhtF2ntro%3D&md5=2c467cbd5d5186873cc0db1fe7d920a7CAS |

Humphreys, W. F., and Adams, M. (1991). The subterranean aquatic fauna of the North West Cape peninsula, Western Australia. Records of the Western Australian Museum 15, 383–411.

Humphreys, W. F., and Adams, M. (2001). Allozyme variation in the troglobitic millipede Stygiochiropus communis (Diplopoda: Paradoxosomatidae) from arid tropical Cape Range, northwestern Australia: population structure and implications for the management of the region. Records of the Western Australian Museum 64, 15–36.

Humphreys, W. F. and the Heritage Council of Western Australia (1994). The subterranean fauna of the Cape Range coastal plain, northwestern Australia. (Heritage Council of Western Australia: East Perth.)

Humphreys, W. F., Adams, M., and Vine, B. (1989). The biology of Schizomus vinei (Chelicerata: Schizomida) in the caves of Cape Range, Western Australia. Journal of Zoology 217, 177–201.
The biology of Schizomus vinei (Chelicerata: Schizomida) in the caves of Cape Range, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Hunt, G. S. (1990). Hickmanoxyomma, a new genus of cavernicolous harvestmen from Tasmania (Opiliones: Triaenonychidae). Records of the Australian Museum 42, 45–68.
Hickmanoxyomma, a new genus of cavernicolous harvestmen from Tasmania (Opiliones: Triaenonychidae).Crossref | GoogleScholarGoogle Scholar |

Irish, J. (1991). Conservation aspects of karst waters in Namibia. Madoqua 17, 141–146.

Jaume, D. (2008). Global diversity of spelaeogriphaceans and thermosbaenaceans (Crustacea: Spelaeogriphacea and Thermosbaenacea) in freshwater. Hydrobiologia 595, 219–224.
Global diversity of spelaeogriphaceans and thermosbaenaceans (Crustacea: Spelaeogriphacea and Thermosbaenacea) in freshwater.Crossref | GoogleScholarGoogle Scholar |

Jaume, D., and Humphreys, W. F. (2001). A new genus of epacteriscid calanoid copepod from an anchialine sinkhole in northwestern Australia. Journal of Crustacean Biology 21, 157–169.
A new genus of epacteriscid calanoid copepod from an anchialine sinkhole in northwestern Australia.Crossref | GoogleScholarGoogle Scholar |

Jaume, D., Boxshall, G. A., and Humphreys, W. F. (2001). New stygobiont copepods (Calanoida: Misophrioida) from Bundera sinkhole, an anchialine cenote on north-western Australia. Zoological Journal of the Linnean Society, London 133, 1–24.
New stygobiont copepods (Calanoida: Misophrioida) from Bundera sinkhole, an anchialine cenote on north-western Australia.Crossref | GoogleScholarGoogle Scholar |

Juan, C., Guzik, M. T., Jaume, D., and Cooper, S. J. B. (2010). Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Molecular Ecology 19, 3865–3880.
Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era.Crossref | GoogleScholarGoogle Scholar | 20637049PubMed |

Juberthie, C., and Decu, V. (Eds) (1994). ‘Encyclopedia Biospeleologica. Vol. 1.’ (Societe Internationale de Biospeleologie: Moulis (C. N. R. S.), France and Bucharest (Academia Románă), Romania.)

Karanovic, T. (2003). First representative of the genus Allocyclops Kiefer, 1932 (Crustacea, Copepoda, Cyclopoida) from Australian subterranean waters. Annales de Limnologie 39, 141–149.
First representative of the genus Allocyclops Kiefer, 1932 (Crustacea, Copepoda, Cyclopoida) from Australian subterranean waters.Crossref | GoogleScholarGoogle Scholar |

Karanovic, I. (2003a). Towards a revision of Candoninae (Crustacea, Ostracoda): description of two new genera from Australian ground-waters. Species Diversity 8, 353–383.

Karanovic, I. (2003b). A new genus of Candoninae (Crustacea, Ostracoda, Candonidae) from the subterranean waters of southwestern Western Australia. Records of the Western Australian Museum 21, 315–332.

Karanovic, I. (2004). Towards a revision of Candoninae (Crustacea, Ostracoda): on the genus Candonopsis Vavra, with description of new taxa. Subterranean Biology 2, 91–108.

Karanovic, T. (2004a). Subterranean Copepoda from arid Western Australia. Crustaceana Monographs 3, 1–366.

Karanovic, T. (2004b). The genus Metacyclops Kiefer in Australia (Crustacea: Copepoda: Cyclopoida), with description of two new species. Records of the Western Australian Museum 22, 193–212.

Karanovic, T. (2005). Two new subterranean Parastenocarididae (Crustacea, Copepoda, Harpacticoida) from Western Australia. Records of the Western Australian Museum 22, 353–374.

Karanovic, I. (2005a). Towards a revision of Candoninae (Crustacea, Ostracoda): Australian representatives of the subfamily, with description of three new genera and seven new species. New Zealand Journal of Marine and Freshwater Research 39, 29–75.
Towards a revision of Candoninae (Crustacea, Ostracoda): Australian representatives of the subfamily, with description of three new genera and seven new species.Crossref | GoogleScholarGoogle Scholar |

Karanovic, I. (2005b). A new Candoninae genus (Crustacea: Ostracoda) from subterranean waters of Queensland with a cladistic analysis of the tribe Candonopsini. Memoirs of the Queensland Museum 50, 303–319.

Karanovic, T. (2006). Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Records of the Western Australian Museum 70, 1–239.

Karanovic, I. (2007). Candoninae Ostracodes from the Pilbara Region in Western Australia. Crustaceana Monographs 7, 1–432.

Karanovic, T., and Eberhard, S. M. (2009). Second representative of the order Misophrioida (Crustacea, Copepoda) from Australia challenges the hypothesis of the Tethyan origin of some anchialine faunas. Zootaxa 2059, 51–68.

Karanovic, I., and Marmonier, P. (2002). On the genus Candonopsis (Crustacea: Ostracoda: Candoninae) in Australia, with key to the world recent species. Annales de Limnologie 38, 199–240.
On the genus Candonopsis (Crustacea: Ostracoda: Candoninae) in Australia, with key to the world recent species.Crossref | GoogleScholarGoogle Scholar |

Karanovic, I., and Marmonier, P. (2003). Three new genera and nine new species of the subfamily Candoninae (Crustacea, Ostracoda, Podocopida) from the Pilbara Region (Western Australia). Beaufortia 53, 1–51.

Karanovic, T., and Pesce, G. L. (2002). Copepods from ground waters of Western Australia, VII. Nitokra humphreysi sp. nov. (Crustacea: Copepoda: Harpacticoida). Hydrobiologia 470, 5–12.
Copepods from ground waters of Western Australia, VII. Nitokra humphreysi sp. nov. (Crustacea: Copepoda: Harpacticoida).Crossref | GoogleScholarGoogle Scholar |

Karanovic, T., Pesce, L., and Humphreys, W. F. (2001). Copepods from ground waters of Western Australia, V. Phyllopodopsyllus wellsi n. sp. (Crustacea: Copepoda: Harpacticoida), with a key to world species. Records of the Western Australian Museum 20, 333–344.

Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=ab391328d4905b4419c219e3a81e46f1CAS | 7463489PubMed |

Koch, M. (2009). Biodiversity of the two-pronged bristletails (Diplura) in Western Australia as revealed from recent mining projects. EPA-Report 1361 (Appendix 3k).

Lefébure, T., Douady, C. J., Gouy, M., and Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40, 435–447.
Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation.Crossref | GoogleScholarGoogle Scholar | 16647275PubMed |

Leys, R., and Watts, C. H. S. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics 22, 217–225.
Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus.Crossref | GoogleScholarGoogle Scholar |

Leys, R., and Watts, C. H. S. (2010). Paroster extraordinarius sp. nov., a new groundwater diving beetle from the Flinders Ranges, with notes on other diving beetles from gravels in South Australia (Coleoptera: Dytiscidae). Australian Journal of Entomology 49, 66–72.
Paroster extraordinarius sp. nov., a new groundwater diving beetle from the Flinders Ranges, with notes on other diving beetles from gravels in South Australia (Coleoptera: Dytiscidae).Crossref | GoogleScholarGoogle Scholar |

Leys, R., Watts, C. H. S., Cooper, S. J. B., and Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution 57, 2819–2834.
| 14761060PubMed |

Lopretto, E. C., and Morrone, J. J. (1998). Anaspidacea, Bathynellacea (Crustacea, Syncarida), generalised tracks, and the biogeographical relationships of South America. Zoologica Scripta 27, 311–318.
Anaspidacea, Bathynellacea (Crustacea, Syncarida), generalised tracks, and the biogeographical relationships of South America.Crossref | GoogleScholarGoogle Scholar |

Malard, F., Boutin, C., Camacho, A. I., Ferreira, D., Michel, G., Sket, B., and Stoch, F. (2009). Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshwater Biology 54, 756–776.
Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe.Crossref | GoogleScholarGoogle Scholar |

Mattox, G. M. T., Bichuette, M. E., Secutti, S., and Trajano, E. (2008). Surface and subterranean ichthyofauna in the Serra do Ramalho karst area, northeastern Brazil, with updated lists of Brazilian troglobitic and troglophilic fishes. Biota Neotropica 8, 145–152.
Surface and subterranean ichthyofauna in the Serra do Ramalho karst area, northeastern Brazil, with updated lists of Brazilian troglobitic and troglophilic fishes.Crossref | GoogleScholarGoogle Scholar |

Michel, G., Malard, F., Deharveng, L., Di Lorenzo, T., Sket, B., and De Broyer, C. (2009). Reserve selection for conserving groundwater biodiversity. Freshwater Biology 54, 861–876.
Reserve selection for conserving groundwater biodiversity.Crossref | GoogleScholarGoogle Scholar |

Modisi, M. P. (1983). The carbonate resources of Botswana. Botswana Department of Geological Survey Mineral Resources, Report 6, Gaberone.

Moore, B. P. (1964). Present-day cave beetle fauna of Australia: a pointer to past climatic change. Helictite 3, 3–9.

Namiotko, T., Wouters, K., Danielopol, D. L., and Humphreys, W. F. (2004). On the origin and evolution of a new anchialine stygobitic Microceratina species (Crustacea, Ostracoda) from Christmas Island (Indian Ocean). Journal of Micropalaeontology 23, 49–59.
On the origin and evolution of a new anchialine stygobitic Microceratina species (Crustacea, Ostracoda) from Christmas Island (Indian Ocean).Crossref | GoogleScholarGoogle Scholar |

Osborne, R. A. L., Zwingmann, H., Pogson, R. E., and Colchester, D. M. (2006). Carboniferous clay deposits from Jenolan Caves, New South Wales: implications for timing of speleogenesis and regional geology. Australian Journal of Earth Sciences 53, 377–405.
Carboniferous clay deposits from Jenolan Caves, New South Wales: implications for timing of speleogenesis and regional geology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsrjP&md5=6b7eead30c48df561bd9e0098ed3ad03CAS |

Page, T. J., Humphreys, W. F., and Hughes, J. M. (2008). Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS ONE 3, e1618.
Shrimps down under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris).Crossref | GoogleScholarGoogle Scholar | 18286175PubMed |

Peck, S. B. (1974). The invertebrate fauna of tropical American caves. Part II: Puerto Rico, an ecological and zoogeographic analysis. Biotropica 6, 14–31.
The invertebrate fauna of tropical American caves. Part II: Puerto Rico, an ecological and zoogeographic analysis.Crossref | GoogleScholarGoogle Scholar |

Peck, S. B. (1980). Climatic change and the evolution of cave invertebrates in the Grand Canyon, Arizona. The NSS Bulletin 42, 53–60.

Peck, S. B. (1984). The distribution and evolution of cavernicolous Ptomaphagus beetles in the southeastern United States (Coleoptera; Leiodidae; Cholevinae) with new species and records. Canadian Journal of Zoology 62, 730–740.
The distribution and evolution of cavernicolous Ptomaphagus beetles in the southeastern United States (Coleoptera; Leiodidae; Cholevinae) with new species and records.Crossref | GoogleScholarGoogle Scholar |

Peck, S. B. (1990). Eyeless arthropods of the Galapagos Islands, Ecuador: composition and origin of the cryptozoic fauna of a young, tropical, oceanic archipelago. Biotropica 22, 366–381.
Eyeless arthropods of the Galapagos Islands, Ecuador: composition and origin of the cryptozoic fauna of a young, tropical, oceanic archipelago.Crossref | GoogleScholarGoogle Scholar |

Peck, S. B. (1999). Historical biogeography of Jamaica: evidence from cave invertebrates. Canadian Journal of Zoology 77, 368–380.
Historical biogeography of Jamaica: evidence from cave invertebrates.Crossref | GoogleScholarGoogle Scholar |

Peck, S. B., and Christiansen, K. (1990). Evolution and zoogeography of the invertebrate cave faunas of the Driftless Area of the Upper Mississippi River Valley of Iowa, Minnesota, Wisconsin, and Illinois, USA. Canadian Journal of Zoology 68, 73–88.
Evolution and zoogeography of the invertebrate cave faunas of the Driftless Area of the Upper Mississippi River Valley of Iowa, Minnesota, Wisconsin, and Illinois, USA.Crossref | GoogleScholarGoogle Scholar |

Pesce, G. L., and De Laurentiis, P. (1996). Copepods from ground waters of Western Australia, III. Diacyclops humphreysi n. sp. and comments on the Diacyclops crassicaudis-complex (Copepoda, Cyclopidae). Crustaceana 69, 524–531.
Copepods from ground waters of Western Australia, III. Diacyclops humphreysi n. sp. and comments on the Diacyclops crassicaudis-complex (Copepoda, Cyclopidae).Crossref | GoogleScholarGoogle Scholar |

Pesce, G. L., De Laurentiis, P., and Humphreys, W. F. (1996a). Copepods from ground waters of Western Australia, I. The genera Metacyclops, Mesocyclops, Microcyclops and Apocyclops (Crustacea: Copepoda: Cyclopidae). Records of the Western Australian Museum 18, 67–76.

Pesce, G. L., De Laurentiis, P., and Humphreys, W. F. (1996b). Copepods from ground waters of Australia, II. The genus Halicyclops (Crustacea: Copepoda: Cyclopidae). Records of the Western Australian Museum 18, 77–85.

Pickford, M., Eisenmann, V., and Senut, B. (1999). Timing of landscape development and calcrete genesis in northern Namaqualand, South Africa. South African Journal of Science 95, 357–359.

Pimm, S. L., Russell, G. J., Gittleman, J. L., and Brooks, T. M. (1995). The future of biodiversity. Science 269, 347–350.
The future of biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntVyit7s%3D&md5=8f8048d5620350d29e6d3a3463a0ed99CAS | 17841251PubMed |

Platnick, N. I. (2008). A new subterranean ground spider genus from Western Australia (Araneae: Trochanteriidae). Invertebrate Systematics 22, 295–299.
A new subterranean ground spider genus from Western Australia (Araneae: Trochanteriidae).Crossref | GoogleScholarGoogle Scholar |

Playford, G. (2009). Devonian reef complexes of the Canning Basin, Western Australia: review of Devonian palynology, Canning Basin. Geological Survey of Western Australia Bulletin 145, 441–444.

Ponder, W. F., Hershler, R., and Jenkins, B. (1989). An endemic radiation of hydrobiid snails from artesian springs in northern South Australia: their taxonomy, physiology, distribution and anatomy. Malacologia 31, 1–140.

Ponder, W. F., Clark, S. A., Eberhard, S. M., and Studdert, J. (2005). A remarkable radiation of hydrobiids in the caves and streams at Precipitous Bluff, south west Tasmania (Mollusca: Caenogastropoda: Hydrobiidae). Zootaxa 1074, 3–66.

Poore, G. C. B., and Humphreys, W. F. (1998). First record of Spelaeogriphacea from Australasia: a new genus and species from an aquifer in the arid Pilbara of Western Australia. Crustaceana 71, 721–742.
First record of Spelaeogriphacea from Australasia: a new genus and species from an aquifer in the arid Pilbara of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Poore, G. C. B., and Humphreys, W. F. (2003). Second species of Mangkurtu (Spelaeogriphacea) from north-western Australia. Records of the Western Australian Museum 22, 67–74.

Reddell, J. R. (1981). A review of the cavernicole fauna of Mexico, Guatemala and Belize. Texas Memorial Museum Bulletin 27, 1–327.

Rix, M. G., Harvey, M. S., and Roberts, J. D. (2008). Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S). Molecular Phylogenetics and Evolution 46, 1031–1048.
Molecular phylogenetics of the spider family Micropholcommatidae (Arachnida: Araneae) using nuclear rRNA genes (18S and 28S).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjtlGrsr0%3D&md5=1a33e275c84cd6016cd48a2d43803c80CAS | 18162409PubMed |

Scarsbrook, M. R., Fenwick, G. D., Duggan, I. C., and Haase, M. (2003). A guide to the groundwater invertebrates of New Zealand. NIWA Science and Technology Series 51, 59.

Sharratt, N. J., Picker, M. D., and Samways, M. J. (2000). The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities. Biodiversity and Conservation 9, 107–143.
The invertebrate fauna of the sandstone caves of the Cape Peninsula (South Africa): patterns of endemism and conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Sket, B., Paragamian, K., and Trontelj, P. (2004). A census of the obligate subterranean fauna of the Balkan Peninsula. In ‘Balkan Biodiversity’. (Ed. H. I. Griffith.) pp. 309–322. (Kluwer Academic Publishers: Dordrecht.)

Souza, M. F. V. R., and Ferreira, R. L. (2010). Eukoenenia (Palpigradi: Eukoeneniidae) in Brazilian caves with the first troglobiotic palpigrade from South America. The Journal of Arachnology 38, 415–424.
Eukoenenia (Palpigradi: Eukoeneniidae) in Brazilian caves with the first troglobiotic palpigrade from South America.Crossref | GoogleScholarGoogle Scholar |

Stoch, S., and Galassi, D. M. P. (2010). Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653, 217–234.
Stygobiotic crustacean species richness: a question of numbers, a matter of scale.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovV2ntbc%3D&md5=d8c8e86f5ad8e0c669e5f9cca481807dCAS |

Taiti, S., and Humphreys, W. F. (2001). New aquatic Oniscidea (Crustacea, Isopoda) from groundwater calcretes of Western Australia. Records of the Western Australian Museum 64, 63–83.

Tasaki, S. (2006). The presence of stygobitic macroinvertebrates in karstic aquifers: a case study in the Cradle of Humankind World Heritage Site. Master of Science Thesis, University of Johannesburg, South Africa.

Thurgate, M. E., Gough, J. S., Spate, A., and Eberhard, S. M. (2001a). Subterranean biodiversity in New South Wales: from rags to riches. Records of the Western Australian Museum 64, 37–48.

Thurgate, M. E., Gough, J. S., Clarke, A. K., Serov, P., and Spate, A. (2001b). Stygofauna diversity and distribution in eastern Australian caves and karst areas. Records of the Western Australian Museum 64, 49–62.

Tomlinson, M. (2009). A framework for determining the environmental water requirements of alluvial aquifer ecosystems. Ph.D. Thesis, University of New England, Armidale.

Trajano, E. (2000). Cave faunas in the Atlantic tropical rain forest: composition, ecology, and conservation. Biotropica 32, 882–893.

Volschenk, E. S., and Prendini, L. (2008). Aops oncodactylus, gen. et sp. nov., the first troglobitic urodacid (Urodacidae: Scorpiones), with a re-assessment of cavernicolous, troglobitic and troglomorphic scorpions. Invertebrate Systematics 22, 235–257.
Aops oncodactylus, gen. et sp. nov., the first troglobitic urodacid (Urodacidae: Scorpiones), with a re-assessment of cavernicolous, troglobitic and troglomorphic scorpions.Crossref | GoogleScholarGoogle Scholar |

Watts, C. H. S., and Humphreys, W. F. (2003). Twenty-five new Dytiscidae (Coleoptera) of the genera Tjirtudessus Watts & Humphreys, Nirripirti Watts & Humphreys and Bidessodes Regimbart, from underground waters in Australia. Records of the South Australian Museum 36, 135–187.

Watts, C. H. S., and Humphreys, W. F. (2009). Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp and Exocelina Broun, from underground waters in Australia. Transactions of the Royal Society of South Australia 133, 62–107.

Wilkens, H., Culver, D. C., and Humphreys, W. F. (Eds) (2000). ‘Ecosystems of the World: Subterranean Ecosystems.’ (Elsevier: Amsterdam.)

Wilson, G. D. F. (2001). Australian groundwater-dependent isopod crustaceans. Records of the Western Australian Museum 62, 239–240.

Wilson, G. D. F. (2003). A new genus of Tainisopidae fam. nov. (Crustacea: Isopoda) from the Pilbara, Western Australia. Zootaxa 245, 1–20.

Wilson, G. D. F. (2008). Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods (Crustacea) to India and New Zealand. Invertebrate Systematics 22, 301–310.
Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods (Crustacea) to India and New Zealand.Crossref | GoogleScholarGoogle Scholar |

Wilson, G. D. F., and Johnson, R. T. (1999). Ancient endemism among freshwater isopods (Crustacea, Phreatoicidea). In ‘The Other 99%: The Conservation and Biodiversity of Invertebrates’. (Eds W. Ponder and D. Lunney.) pp. 264–268. (Transactions of the Royal Zoological Society of New South Wales: Mosman.)

Wilson, G. D. F., and Keable, S. J. (1999). A new genus of phreatoicidean isopod (Crustacea) from the north Kimberley region, Western Australia. Zoological Journal of the Linnean Society, London 126, 51–79.
A new genus of phreatoicidean isopod (Crustacea) from the north Kimberley region, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Wilson, G. D. F., and Ponder, W. F. (1992). Extraordinary new subterranean isopods (Peracarida: Crustacea) from the Kimberley region, Western Australia. Records of the Australian Museum 44, 279–298.
Extraordinary new subterranean isopods (Peracarida: Crustacea) from the Kimberley region, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Yager, J., and Humphreys, W. F. (1996). Lasionectes exleyi, sp. nov., the first remipede crustacean recorded from Australia and the Indian Ocean, with a key to the world species. Invertebrate Systematics 10, 171–187.
Lasionectes exleyi, sp. nov., the first remipede crustacean recorded from Australia and the Indian Ocean, with a key to the world species.Crossref | GoogleScholarGoogle Scholar |

Yeates, D. K., Harvey, M. S. D., and Austin, A. D. (2003). New estimates for terrestrial arthropod species-richness in Australia. Proceedings of the Royal Society of South Australia 7, 231–241.

Zagmajster, M., Culver, D. C., and Sket, B. (2008). Species richness patterns of obligate subterranean beetles (Insecta: Coleoptera) in a global biodiversity hotspot – effect of scale and sampling intensity. Diversity & Distributions 14, 95–105.
Species richness patterns of obligate subterranean beetles (Insecta: Coleoptera) in a global biodiversity hotspot – effect of scale and sampling intensity.Crossref | GoogleScholarGoogle Scholar |