CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine and Freshwater Research   
Marine and Freshwater Research
Journal Banner
  Advances in the aquatic sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 56(1)

The influence of coral reefs on atmospheric dimethylsulphide over the Great Barrier Reef, Coral Sea, Gulf of Papua and Solomon and Bismarck Seas

Graham B. Jones A C, Anne J. Trevena B

A Centre for Coastal Management, School of Environmental Science & Management, Southern Cross University, Lismore, NSW 2480, Australia.
B Glaciology Unit, Department of Earth and Environmental Sciences, Universite Libre de Bruxelles, CP 160/03, 50, av. F.D. Roosevelt, 1050 – Bruxelles, Belgium.
C Corresponding author. Email: gjones@scu.edu.au
PDF (612 KB) $25
 Export Citation


Marked regional differences in dissolved dimethylsulphide (DMS), atmospheric DMS and DMS flux were recorded during July 1997 through the northern Great Barrier Reef, Coral Sea, Gulf of Papua, Solomon and Bismarck Seas. Highest concentrations of dissolved DMS occurred in the Coral Sea, Gulf of Papua and Bismarck Sea, with lower concentrations in the Great Barrier Reef and Solomon Sea. Elevated levels of atmospheric DMS often occurred in south-easterly to southerly trade winds sampled in the region 18°32′–8°12′S to 145°–151°E, where the highest biomass of coral reefs occurred. Atmospheric DMS often increased in the day after low tides and was positively correlated with tidal height in the northern Great Barrier Reef (r = 0.91, P < 0.05). For tides less than 1.6 m, atmospheric DMS increased on the rising tide for the northern GBR and NW Coral Sea (r = 0.66; P < 0.05) and for the whole voyage (r = 0.25; P < 0.05). As coral reefs have been identified as significant sources of DMS, it is suggested that the daytime increase in atmospheric DMS over much of the study area was mainly a result of high winds and extremely low tides in July, which exposed the reefs during the day.

Keywords: atmospheric DMS, dimethylsulphoniopropionate (DMSP), DMS flux.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016