CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |         Contents Vol 60(1)

Optimising sample volume and replicates using the Bou-Rouch method for the rapid assessment of hyporheic fauna

Samuel Kibichii A B, Jan-Robert Baars A, Mary Kelly-Quinn A

A Freshwater Biodiversity, Ecology and Fisheries Research Group, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
B Corresponding author. Email: Samuel.Kibichii@ucd.ie
 
PDF (867 KB) $25
 Export Citation
 Print
  


Abstract

Despite the widespread use of the Bou-Rouch method in obtaining hyporheic samples in ecological studies, problems persist in comparing data because of differences in volume and number of samples taken in various studies. Towards standardising this method, we conducted a study in the Delour River, Ireland, between March and September 2006. The hyporheic habitat was divided into three lateral zones: the flowing stream (SS); the stream–terrestrial ecotone (EC); and the terrestrial margin (TM). Between 3 and 6 random insertions of the stand pipe were made into the hyporheic habitat at 0.2 m and 0.5 m in each zone. Ten consecutive 1-L samples were pumped at each point to determine an optimum sample volume and replicates needed to estimate taxon richness and abundance. The optimum sample combinations range between 6 and 15 3- to 10-L samples depending on depth and habitat zone. Our results show that both spatial and temporal scales are important factors in considering the optimum combinations of sample volume and number of independent spatial replicates needed to sample stream hyporheos, with the zone closer to the flowing stream requiring many small-volume samples whereas areas further away towards the alluvial groundwater need larger volumes with small numbers of replicates.

Keywords: cumulative taxon richness and abundance, groundwater, hyporheos, randomised taxon accumulation curves.


   
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014