CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 62(11)

The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects

Marie-José Dole-Olivier

Université Lyon 1, Unité Mixte de Recherches 5023, Centre National de la Recherche Scientifique: Ecology of Fluvial Hydrosystems, F-69622 Villeurbanne, France. Email: marie-jose.olivier@univ-lyon1.fr

Marine and Freshwater Research 62(11) 1281-1302 http://dx.doi.org/10.1071/MF11084
Submitted: 11 April 2011  Accepted: 18 July 2011   Published: 12 October 2011


 
PDF (886 KB) $25
 Export Citation
 Print
  
Abstract

The hyporheic zone (HZ) is thought to serve multiple functions for lotic invertebrates, but its role in the persistence of benthic assemblages after disturbances (‘hyporheic refuge hypothesis’, HRH) has never been clearly demonstrated since its initial proposal in 1953. Water exchanges through the HZ appear to be crucial in determining most hyporheic processes and subsequently, in controlling directly or indirectly the distribution of hyporheic assemblages. At present, it seems that the distribution of hyporheic refugia would also be controlled by hyporheic flowpaths, explaining the non-uniform response to the HRH documented in the literature. In light of recent developments in hyporheic hydrology, it is timely to propose research directions for understanding the distribution and patchiness of hyporheic refugia. This review proposes a framework of hypotheses, based on the recognition of hyporheic flowpaths across several scales and predicting the highest refugial capacity in large-scale upwelling zones. Outcomes from this framework include the development of physical indicators measuring the ability of the HZ to protect invertebrates, the identification of river areas demonstrating the highest refuge capacity (hyporheic hotspots) and the promotion in restoration projects of suitable hydrologic exchanges for enhancing the development of hyporheic hotspots.

Additional keywords: aquatic invertebrates, drying, flooding, flow recession, hyporheic flowpaths, hyporheic refugia, spatial scales, stream geomorphology.


References

Adkins, S. C., and Winterbourn, M. J. (1999). Vertical distribution and abundance of invertebrates in two New Zealand stream beds: a freeze coring study. Hydrobiologia 400, 55–62.
CrossRef |

Amoros, C., Roux, A. L., Reygrobellet, J.-L., Bravard, J.-P., and Pautou, G. (1987). A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers: Research Management 1, 17–36.

Anderson, J. K., Wondzell, S. M., Gooseff, M. N., and Haggerty, R. (2005). Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H. J. Andrews experimental forest, Oregon, USA. Hydrological Processes 19, 2931–2949.
CrossRef |

Angelier, E. (1953). Recherches écologiques et biogéographiques sur la faune des sables submergés. Archives de Zoologie Expérimentale et Genérale 90, 37–162.

Angradi, T. R. (1997). Hydrologic context and macroinvertebrate community response to floods in an Appalachian headwater stream. American Midland Naturalist 138, 371–386.
CrossRef |

Angradi, T., Hood, R., and Tarter, D. (2001). Vertical, longitudinal and temporal variation in the macrobenthos of an Appalachian headwater stream system. American Midland Naturalist 146, 223–242.
CrossRef |

Bartoszek, J. E. (2001). Comparison of hyporheic organisms in two intermittent streams to assess a local disturbance. Journal of Freshwater Ecology 16, 575–579.
CrossRef |

Baxter, C. V., and Hauer, F. R. (2000). Geomorphology, hyporheic exchange and selection of spawning habitat by bull trout (Salvelinus confluentus). Canadian Journal of Fisheries and Aquatic Sciences 57, 1470–1481.
CrossRef |

Belaidi, N., Taleb, A., and Gagneur, J. (2004). Composition and dynamics of hyporheic and surface fauna in a semi-arid stream in relation to the management of a polluted reservoir. Annales de Limnologie-International Journal of Limnology 40, 237–248.
CrossRef |

Bishop, J. E. (1973). Observations on the vertical distribution of the benthos in a Malaysian stream. Freshwater Biology 3, 147–156.
CrossRef |

Blaschke, A. P., Steiner, K.-H., Schmalfuss, R., Gutknecht, D., and Sengschmitt, D. (2003). Clogging processes in hyporheic interstices of an impounded river, the Danube at Vienna, Austria. International Review of Hydrobiology 88, 397–413.
CrossRef |

Bo, T., Cucco, M., Fenoglio, S., and Malacarne, G. (2006). Colonisation patterns and vertical movements of stream invertebrates in the interstitial zone: a case study in the Apennines, NW Italy. Hydrobiologia 568, 67–78.
CrossRef |

Bo, T., Fenoglio, S., Malacarne, G., Pessino, M., and Sgariboldi, F. (2007). Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica 37, 186–192.
CrossRef |

Boano, F., Camporeale, C., Revelli, R., and Ridolfi, L. (2006). Sinuosity-driven hyporheic exchange in meandering rivers. Geophysical Research Letters 33, L18406.
CrossRef |

Borchardt, D. (1993). Effects of flow and refugia on drift loss of benthic macroinvertebrates: implications for habitat restoration in lowland streams. Freshwater Biology 29, 221–227.
CrossRef |

Borchardt, D., and Statzner, B. (1990). Ecological impact of urban stormwater runoff studied in experimental flumes: population loss by drift and availability of refugial space. Aquatic Sciences 52, 299–314.
CrossRef |

Boulton, A. J. (1989). Over-summering refuges of aquatic macroinvertebrates in two intermittent streams in central Victoria. Transactions of the Royal Society of South Australia 113, 23–34.

Boulton, A. J. (2000). The functional role of the hyporheos. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 27, 51–63.
| CAS |

Boulton, A. J. (2003). Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology 48, 1173–1185.
CrossRef |

Boulton, A. J. (2007). Hyporheic rehabilitation in rivers: restoring vertical connectivity. Freshwater Biology 52, 632–650.
CrossRef |

Boulton, A. J., and Foster, J. G. (1998). Effects of buried leaf litter and vertical hydrologic exchange on hyporheic water chemistry and fauna in a gravel-bed river in northern New South Wales, Australia. Freshwater Biology 40, 229–243.
CrossRef |

Boulton, A. J., and Lake, P. S. (1988). Australian temporary streams: some ecological characteristics. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 23, 1380–1383.

Boulton, A. J., and Lake, P. S. (1992). The ecology of two intermittent streams in Victoria, Australia. II. Temporal changes in faunal composition. Freshwater Biology 27, 123–138.
CrossRef |

Boulton, A. J., and Lloyd, L. N. (1992). Flooding frequency and invertebrate emergence from dry floodplain sediments of the River Murray, Australia. Regulated Rivers: Research and Management 7, 137–151.
CrossRef |

Boulton, A. J., and Stanley, E. H. (1995). Hyporheic processes during flooding and drying in a Sonoran desert stream. II. Faunal dynamics. Archiv fuer Hydrobiologie 134, 27–52.

Boulton, A. J., and Suter, P. J. (1986). Ecology of temporary streams – an Australian perspective. In ‘Limnology in Australia’. (Eds P. De Dekker and W. D. Williams.) pp. 313–327. (Dr W. Junk Publishing: Dordercht, The Netherlands.)

Boulton, A. J., Stibbe, S. E., Grimm, N. B., and Fisher, S. G. (1991). Invertebrate recolonisation of small patches of defaunated hyporheic sediments in a Sonoran Desert stream. Freshwater Biology 26, 267–277.
CrossRef |

Boulton, A. J., Valett, H. M., and Fisher, S. G. (1992). Spatial distribution and taxonomic composition of the hyporheos of several Sonoran Desert streams. Archiv fuer Hydrobiologie 125, 37–61.

Boulton, A. J., Scarsbrook, M. R., Quinn, J. M., and Burrell, G. P. (1997). Land-use effects on the hyporheic ecology of five small streams near Hamilton, New Zealand. New Zealand Journal of Marine and Freshwater Research 31, 609–622.
CrossRef | CAS |

Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., and Valett, M. H. (1998). The functional significance of hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29, 59–81.
CrossRef |

Boulton, A. J., Dole-Olivier, M. J., and Marmonier, P. (2003). Optimizing a sampling strategy for assessing hyporheic invertebrate biodiversity using the Bou-Rouch method: within-site replication and sample volume. Archiv fuer Hydrobiologie 156, 431–456.
CrossRef |

Boulton, A. J., Harvey, M., and Proctor, H. (2004). Of spates and species: responses by interstitial water mites to simulated spates in a subtropical Australian river. Experimental & Applied Acarology 34, 149–169.
CrossRef |

Boulton, A. J., Datry, T., Kasahara, T., Mutz, M., and Stanford, J. A. (2010). Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society 29, 26–40.

Brooks, S. S., and Boulton, A. J. (1991). Recolonisation dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Australian Journal of Marine and Freshwater Research 42, 295–308.
CrossRef |

Brunke, M., and Gonser, T. (1997). The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37, 1–33.
CrossRef |

Brunke, M., and Gonser, T. (1999). Hyporheic invertebrates – the clinal nature of interstitial communities structured by hydrological exchange and environmental gradients. Journal of the North American Benthological Society 18, 344–362.
CrossRef |

Buffington, J. M., and Tonina, D. (2009). Hyporheic exchange in mountain rivers II: Effects of channel morphology on mechanics, scales and rates of exchange. Geography Compass 3, 1038–1062.
CrossRef |

Chergui, H., Haddy, L., Markaoui, M., and Pattee, E. (1997). Impact of dead leaves leaching products on water oxygen content and on the survival of a gastropod. Acta Oecologica. International Journal of Ecology 18, 531–542.

Clarke, A., Mac Nally, R., Bond, N., and Lake, P. S. (2008). Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53, 1707–1721.
CrossRef |

Clifford, H. G. (1966). The ecology of invertebrates in an intermittent stream. Investigations of Indiana Lakes and Streams VII, 57–97.

Clinton, S. M., Grimm, N. B., and Fisher, S. G. (1996). Response of a hyporheic invertebrate assemblage to drying disturbance in a desert stream. Journal of the North American Benthological Society 15, 700–712.
CrossRef |

Coleman, M. J., and Hynes, H. B. N. (1970). The vertical distribution of the invertebrate fauna in the bed of a stream. Limnology and Oceanography 15, 31–40.

Collins, B. M., Sobczak, W. V., and Colburn, E. A. (2007). Subsurface flowpaths in a forested headwater stream harbor a diverse macroinvertebrate community. Wetlands 27, 319–325.
CrossRef |

Cooling, M. P., and Boulton, A. J. (1993). Aspects of the hyporheic zone below the terminus of a South Australian arid-zone stream. Australian Journal of Marine and Freshwater Research 44, 411–426.
CrossRef |

Covich, A. P., Crowl, T. A., and Scatena, F. N. (2003). Effects of extreme low flows on freshwater shrimps in a perennial tropical stream. Freshwater Biology 48, 1199–1206.
CrossRef |

Creuzé des Châtelliers, M. (1991). Geomorphological processes and discontinuities in the macrodistribution of the interstitial fauna. A working hypothesis. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 24, 1609–1612.

Creuzé des Châtelliers, M., and Reygrobellet, J.-L. (1990). Interactions between geomorphological processes, benthic and hyporheic communities: first results on a by-passed canal of the French Upper-Rhône River. Regulated Rivers: Research and Management 5, 139–158.
CrossRef |

Datry, T., and Larned, S. T. (2008). River flow controls ecological processes and invertebrate assemblages in subsurface flowpaths of an ephemeral river reach. Canadian Journal of Fisheries and Aquatic Sciences 65, 1532–1544.
CrossRef | CAS |

Datry, T., Corti, R., Claret, C., and Philippe, M. (2011). Flow intermittence controls leaf litter breakdown in a French temporary alluvial river: the ‘drying memory’. Aquatic Sciences , .
CrossRef |

Davy-Bowker, J., Sweetin, W., Wright, N., Clarke, R., and Arnott, S. (2006). The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia 563, 109–123.
CrossRef |

del Rosario, R. B., and Resh, V. H. (2000). Invertebrates in intermittent and perennial streams: is the hyportheic zone a refuge from drying? Journal of the North American Benthological Society 19, 680–696.
CrossRef |

del Rosario, R. B., and Resh, V. H. (2001). Interstitial invertebrate assemblages associated with small-scale subsurface flowpaths in perennial and intermittent California streams. Archiv fuer Hydrobiologie 150, 629–640.

Delucchi, C. M. (1987). Comparison of community structure among streams with different temporal flow regimes. Canadian Journal of Zoology – Revue Canadienne de Zoologie 66, 579–586.
CrossRef |

Delucchi, C. M. (1989). Movement patterns of invertebrates in temporary and permanent streams. Oecologia 78, 199–207.
CrossRef |

Delucchi, C. M., and Peckarsky, B. L. (1989). Life history patterns of insects in an intermittent and permanent stream. Journal of the North American Benthological Society 8, 308–321.
CrossRef |

Dole, M.-J., and Chessel, D. (1986). Stabilité physique et biologique des milieux interstitiels. Cas de deux stations du Haut Rhône. Annales de Limnologie. International Journal of Limnology 22, 69–81.
CrossRef |

Dole-Olivier, M.-J., and Marmonier, P. (1992). Effects of spates on the vertical distribution of the interstitial community. Hydrobiologia 230, 49–61.
CrossRef |

Dole-Olivier, M.-J., Marmonier, P., and Beffy, J.-L. (1997). Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37, 257–276.
CrossRef |

Dostine, P. L., Paltridge, R. M., Humphrey, C. L., and Boulton, A. J. (1997). Macroinvertebrate recolonisation after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia). Marine and Freshwater Research 48, 633–645.
CrossRef |

Elliott, A. H., and Brooks, N. H. (1997). Transfer of nonsorbing solutes to a streambed with bed forms: theory. Water Resources Research 33, 123–136.
CrossRef | CAS |

Fenoglio, S., Agosta, P., Bo, T., and Cucco, M. (2002). Field experiments on colonisation and movements of stream invertebrates in an Apennine river (Visone, NW Italy). Hydrobiologia 474, 125–130.
CrossRef |

Fenoglio, S., Bo, T., and Bosi, G. (2006). Deep interstitial habitat as refuge for Agabus paludosus (Fabricius) (Coleoptera: Dytiscidae) during summer droughts. Coleopterists Bulletin 60, 37–41.
CrossRef |

Fenoglio, S., Bo, T., Cucco, M., and Malacarne, G. (2007). Response of benthic invertebrate assemblages to varying drought conditions in the Po river (NW Italy). The Italian Journal of Zoology 74, 191–201.
CrossRef |

Fisher, S. G. (1990). Recovery processes in lotic ecosystems: limits of successional theory. Environmental Management 14, 725–736.
CrossRef |

Fowler, R. T. (2002). Relative importance of surface and subsurface movement on benthic community recovery in the Makaretu River, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research 36, 459–469.
CrossRef |

Fowler, R. T. (2004). The recovery of benthic invertebrate communities following dewatering in two braided rivers. Hydrobiologia 523, 17–28.
CrossRef |

Fowler, R. T., and Scarsbrook, M. R. (2002). Influence of hydrologic exchange patterns on water chemistry and hyporheic invertebrate communities in three gravel-bed rivers. New Zealand Journal of Marine and Freshwater Research 36, 471–482.
CrossRef |

Franken, R. J. M., Batten, S., Beijer, J. A. J., Gardeniers, J. J. P., Scheffer, M., et al. (2006). Effect of interstitial refugia and current velocity on growth of the amphipod Gammarus pulex Linnaeus. Journal of the North American Benthological Society 25, 656–663.
CrossRef |

Gagneur, J., and Chaoui-Boudghane, C. (1991). Sur le rôle du milieu hyporhéique pendant l’asséchement des oueds de l’ouest algérien. Stygologia 6, 77–89.

Gayraud, S., Philippe, M., and Maridet, L. (2000). The response of benthic macroinvertebrates to artificial disturbance: drift or vertical movements in the gravel bed of two subalpine streams? Archiv fuer Hydrobiologie 147, 431–446.

Giberson, D. J., and Hall, R. J. (1988). Seasonal variation in faunal distribution within the sediment of a Canadian shield stream, with emphasis on responses to spring floods. Canadian Journal of Fisheries and Aquatic Sciences 45, 1994–2002.
CrossRef |

Gibert, J., Stanford, J. A., Dole-Olivier, M.-J., and Ward, J. V. (1994). Basic attributes of groundwater ecosystems and prospects for research. In ‘Groundwater Ecology’. (Eds J. Gibert, D. L. Danielopol and J. A. Stanford.) pp. 7–40. (Academic Press: San Diego.)

Gooseff, M. N., Anderson, J. K., Wondzell, S. M., LaNier, J., and Haggerty, R. (2006). A modelling study of hyporheic exchange pattern and the sequence, size and spacing of stream bedforms in mountain stream networks, Oregon, USA. Hydrological Processes 20, 2443–2457.
CrossRef |

Gore, J. A., and Milner, A. M. (1990). Island biogeographical theory: can it be used to predict lotic recovery rates? Environmental Management 14, 737–753.
CrossRef |

Govedich, F., Oberlin, G., and Blinn, D. W. (1996). Comparison of channel and hyporheic invertebrate communities in a southwestern USA desert stream. Journal of Freshwater Ecology 11, 201–209.
CrossRef |

Gray, L. J., and Fisher, S. G. (1981). Postflood recolonisation pathways of macroinvertebrates in a lowland Sonoran desert stream. American Midland Naturalist 106, 249–257.
CrossRef |

Griffith, M. B., and Perry, S. A. (1993). The distribution of macroinvertebrates in the hyporheic zone of two small Appalachian headwater streams. Archiv fuer Hydrobiologie 126, 373–384.

Hakenkamp, C. C., and Palmer, M. A. (1992). Problems associated with quantitative sampling of shallow groundwater invertebrates. In ‘Proceedings of the First International Conference on Ground Water Ecology’. pp. 101–110. (American Water Resource Association: Bethesda.)

Hakenkamp, C. C., Valett, H. M., and Boulton, A. J. (1993). Perspectives on the hyporheic zone: integrating hydrology and biology; concluding remarks. Journal of the North American Benthological Society 12, 94–99.
CrossRef |

Hancock, P. J. (2002). Human impacts on the stream–groundwater exchange zone. Environmental Management 29, 763–781.
CrossRef |

Hancock, P. J., Boulton, A. J., and Humphreys, W. F. (2005). Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeology Journal 13, 98–111.
CrossRef | CAS |

Hayashi, M., and Rosenberry, D. O. (2002). Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40, 309–316.
CrossRef | CAS |

Hester, E. T., and Doyle, M. W. (2008). In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research 44, W03417.
CrossRef |

Hester, E. T., and Gooseff, M. N. (2010). Moving beyond the banks: hyporheic restoration is fundamental to restoring ecological services and functions of streams. Environmental Science & Technology 44, 1521–1525.
CrossRef | CAS |

Holomuzki, J. R., and Biggs, B. J. F. (2000). Taxon-specific responses to high-flow disturbance in streams: implications for population persistence. Journal of the North American Benthological Society 19, 670–679.
CrossRef |

Holomuzki, J. R., and Biggs, B. J. F. (2007). Physical microhabitat effects on 3-dimensional spatial variability of the hydrobiid snail, Potamopyrgus antipodarum. New Zealand Journal of Marine and Freshwater Research 41, 357–367.
CrossRef |

Hose, G. C., Jones, P., and Lim, P. R. (2005). Hyporheic macroinvertebrates in riffle and pool areas of temporary streams in south eastern Australia. Hydrobiologia 532, 81–90.
CrossRef |

Hubault, E. (1927). Contribution à l’étude des invertébrés torrenticoles. Bulletin Biologique de la France et de la Belgique 9, 1–390.

Humphries, P., and Baldwin, D. S. (2003). Drought and aquatic ecosystems: an introduction. Freshwater Biology 48, 1141–1146.
CrossRef |

Huntington, T. G. (2006). Evidence for intensification of the global water cycle: review and synthesis. Journal of Hydrology 319, 83–95.
CrossRef |

Hynes, H. B. N. (1974). Further studies on the distribution of stream animals within the substratum. Limnology and Oceanography 19, 92–99.
CrossRef |

Hynes, H. B. N. (1983). Groundwater and stream ecology. Hydrobiologia 100, 93–99.
CrossRef |

Ibisch, R. B., Seydell, I., and Borchardt, D. (2009). Influence of periphyton biomass dynamics on biological colmation processes in the hyporheic zone of a gravel bed river (River Lahn, Germany). Advances in Limnology 61, 87–104.
| CAS |

Imbert, J. B., and Perry, J. A. (1999). Invertebrate responses to stepwise and abrupt increases in non-scouring flow: the role of refugia. Archiv fuer Hydrobiologie 146, 167–187.

James, A. B. W., and Suren, A. M. (2009). The response of invertebrates to a gradient of flow reduction – an instream channel study in a New Zealand lowland river. Freshwater Biology 54, 2225–2242.
CrossRef |

James, A. B. W., Dewson, Z. S., and Death, R. G. (2008). Do stream macroinvertebrates use instream refugia in response to severe short-term flow reduction in New Zealand streams? Freshwater Biology 53, 1316–1334.
CrossRef |

Jeffrey, K. A. F., Beamish, W. H., Ferguson, S. C., Kolton, R. J., and Mac Mahon, P. D. (1986). Effects of the lampricide, 3-trifluoromethyl-4-nitrophenol (TFM) on the macroinvertebrates within the hyporheic region of a small stream. Hydrobiologia 134, 43–51.
CrossRef |

Kasahara, T., and Hill, A. R. (2006). Hyporheic exchange flows induced by constructed riffles and steps in lowland streams in southern Ontario, Canada. Hydrological Processes 20, 4287–4305.
CrossRef | CAS |

Kasahara, T., and Wondzell, S. M. (2003). Geomorphic controls on hyporheic exchange flow in mountain streams. Water Resources Research 39, 1005.
CrossRef |

Kasahara, T., Datry, T., Mutz, M., and Boulton, A. J. (2009). Treating causes not symptoms: restoration of surface–groundwater interactions in rivers. Marine and Freshwater Research 60, 976–981.
CrossRef |

Koutný, J., and Rulik, M. (2007). Hyporheic biofilm particulate organic carbon in a small lowland stream (Sitka, Czech Republic): structure and distribution. International Review of Hydrobiology 92, 402–412.
CrossRef |

Kowarc, A. V. (1992). Depth distribution and mobility of a harpacticoid copepod within the bed sediment of an alpine brook. Regulated Rivers: Research and Management 7, 58–64.

Lake, P. S. (2000). Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society 19, 573–592.
CrossRef |

Lake, P. S. (2003). Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48, 1161–1172.
CrossRef |

Lancaster, J. (2008). Movement and dispersion of insects in stream channels: what role does flow play? In ‘Aquatic Insects: Challenges to Populations’. (Eds J. Lancaster and R.A. Briers.) pp. 139–157. (CAB International: Wallingford, UK.)

Lancaster, J., and Belyea, L. R. (1997). Nested hierarchies and scale-dependence of mechanisms of flow refugium use. Journal of the North American Benthological Society 16, 221–238.
CrossRef |

Lancaster, J., and Hildrew, A. G. (1993). Flow refugia and the microdistribution of lotic macroinvertebrates. Journal of the North American Benthological Society 12, 385–393.
CrossRef |

Leopold, L. B., Wolman, M. G., and Miller, J. P. (Eds) (1964). ‘Fluvial Processes in Geomorphology.’ (Dover Publications: San Francisco.)

LeRoy Poff, N., and Ward, J. V. (1990). Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management 14, 629–645.
CrossRef |

Malard, F. (2003). Interstitial fauna. In ‘Ecology of a Glacial Flood Plain’. (Eds J.V. Ward and U. Uehlinger.) pp. 175–198. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Malard, F., Ward, J. V., and Robinson, C. T. (2000). An expanded perspective of the hyporheic zone. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 27, 431–437.
| CAS |

Malard, F., Lafont, M., Burgherr, P., and Ward, J. V. (2001). A comparison of longitudinal patterns in hyporheic and benthic oligochaete assemblages in a glacial river. Arctic, Antarctic and Alpine Research 33, 457–466.
CrossRef |

Malard, F., Tockner, K., Dole-Olivier, M.-J., and Ward, J. V. (2002). A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology 47, 621–640.
CrossRef |

Malard, F., Ferreira, D., Dolédec, S., and Ward, J. V. (2003). Influence of groundwater upwelling on the distribution of the hyporheos in a headwater river flood plain. Archiv fuer Hydrobiologie 157, 89–116.
CrossRef | CAS |

Malcolm, I. A., Soulsby, C., Youngson, A. F., and Hannah, D. M. (2005). Catchment scale controls on groundwater–surface water interactions in the hyporheic zone: implications for salmon embryo survival. River Research and Applications 21, 977–989.
CrossRef |

Marchant, R. (1988). Vertical distribution of benthic invertebrates in the bed of the Thomson River, Victoria. Australian Journal of Marine and Freshwater Research 39, 775–784.
CrossRef |

Marchant, R. (1995). Seasonal variation in the vertical distribution of hyporheic invertebrates in an Australian upland river. Archiv fuer Hydrobiologie 134, 441–457.

Marmonier, P., and Creuzé des Châtelliers, M. (1991). Effects of spates on interstitial assemblages of the Upper Rhône River. Importance of spatial heterogeneity. Hydrobiologia 210, 243–251.
CrossRef |

Marmonier, P., and Dole, M.-J. (1986). Les Amphipodes des sédiments d’un bras court-circuité du Rhône: logique de répartition et réaction aux crues. Sciences de l’Eau 5, 461–486.

Marmonier, P., Dole-Olivier, M.-J., and Creuzé des Châtelliers, M. (1992). Spatial distribution of interstitial assemblages in the floodplain of the Rhône River. Regulated Rivers: Research and Management 7, 75–82.
CrossRef |

Matthaei, C. D., and Townsend, C. R. (2000). Inundated floodplain gravels in a stream with an unstable bed: temporary shelter or true invertebrate refugium? New Zealand Journal of Marine and Freshwater Research 34, 147–156.
CrossRef |

Matthaei, C. D., Werthmüller, D., and Frutiger, A. (1997). Invertebrate recovery from a bed-moving spate: the role of drift versus movements inside or over the substratum. Archiv fuer Hydrobiologie 140, 221–235.

Matthaei, C. D., Peacock, K. A., and Townsend, C. R. (1999). Scour and fill patterns in a New Zealand stream and potential implications for invertebrate refugia. Freshwater Biology 42, 41–57.
CrossRef |

Mc Elravy, E. P., and Resh, V. (1991). Distribution and seasonal occurrence of the hyporheic fauna in a northern California stream. Hydrobiologia 220, 233–246.

Milner, A. M., and Petts, G. E. (1994). Glacial rivers: physical habitat and ecology. Freshwater Biology 32, 295–307.
CrossRef |

Montgomery, D. R., and Buffington, J. M. (1997). Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin 109, 596–611.
CrossRef |

Murray, B. R., Zeppel, M. J. B., Hose, G. C., Eamus, D., and Licari, D. (2003). Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers. Ecological Management & Restoration 4, 110–113.
CrossRef |

Negishi, J. N., Inoue, M., and Nunokawa, M. (2002). Effects of channelisation on stream habitat in relation to a spate and flow refugia for macroinvertebrates in northern Japan. Freshwater Biology 47, 1515–1529.
CrossRef |

Olsen, D. A. (2006). Macroinvertebrates of the Wairau River and the likely consequences of proposed hydroelectric development. DOC (Department Of Conservation). Research and Development Series 256, 1–25.

Olsen, D. A., and Townsend, C. R. (2003). Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology 48, 1363–1378.
CrossRef |

Olsen, D. A., and Townsend, C. R. (2005). Flood effects on invertebrates, sediments and particulate organic matter in the hyoprheic zone of a gravel-bed stream. Freshwater Biology 50, 839–853.
CrossRef |

Orghidan, T. (1955). Un nou domeniu de viata acvatica subterana: ‘biotopul hiporeic’. Buletin Stiintific sectia de Biologie si stiinte Agricole si sectia de Geologie si Geografie VII, 657–676.

Orghidan, T. (1959). Ein neuer lebensraum des unterirdischen Wassers, der hyporheische Biotop. Archiv fuer Hydrobiologie 55, 392–414.

Orghidan, T. (2010). A new habitat of subsurface waters: the hyporheic biotope. Fundamental and Applied Limnology. Archiv fuer Hydrobiologie 176, 291–302.
CrossRef |

Packman, A. I., and Salehin, M. (2003). Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia 494, 291–297.
CrossRef |

Palmer, M. A. (1993). Experimentation in the hyporheic zone: challenges and prospectus. Journal of the North American Benthological Society 12, 84–93.
CrossRef |

Palmer, M. A., Bely, A. E., and Berg, K. E. (1992). Response of invertebrates to lotic disturbance: a test of the hyporheic refuge hypothesis. Oecologia 89, 182–194.

Paltridge, R. M., Dostine, P. L., Humphrey, C. L., and Boulton, A. J. (1997). Macroinvertebrate recolonisation after re-wetting of a tropical seasonally-flowing stream (Magela Creek, Northern Territory, Australia). Marine and Freshwater Research 48, 633–645.
CrossRef |

Paneck, K. L. J. (1991). Migrations of the macrozoobenthos within the bedsediments of the ‘Oberer Seebach’, a second order alpine brook (Ritrodat-Lunz study area, Austria). Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie 24, 1944–1947.

Poole, G. C. (2010). Stream geomorphology as a physical science basis for advances in stream ecology. Journal of the North American Benthological Society 29, 12–25.

Poole, W., and Stewart, K. W. (1976). The vertical distribution of macrobenthos within the substratum of Brazos River, Texas. Hydrobiologia 50, 151–160.
CrossRef |

Poole, G. C., Stanford, J. A., Running, S. W., Frissell, C. A., Woessner, W. W., et al. (2004). A patch hierarchy approach to modelling surface and subsurface hydrology in complex flood plain environments. Earth Surface Processes and Landforms 29, 1259–1274.
CrossRef |

Poole, G. C., Stanford, J. A., Running, S. W., and Frissell, C. A. (2006). Multiscale geomorphic drivers of groundwater flow paths: subsurface hydrologic dynamics and hyporheic habitat diversity. Journal of the North American Benthological Society 25, 288–303.
CrossRef |

Pugsley, C. W., and Hynes, H. B. N. (1983). A modified freeze-core technique to quantify the depth distribution of fauna in stony streambeds. Canadian Journal of Fisheries and Aquatic Sciences 40, 637–643.
CrossRef |

Puig, M. A., Sabater, F., and Malo, J. (1990). Benthic and hyporheic faunas of mayflies and stoneflies in the Ter River basin (NE Spain). In ‘Mayflies and Stoneflies’. (Ed. I. C. Campbell) pp. 255–258. (Kluwer Academic Publishers: Dordrecht, The Netherlands.)

Reice, S. R., Wissmar, R. C., and Naiman, R. J. (1990). Disturbance regimes, resilience and recovery of animal communities and habitats in lotic ecosystems. Environmental Management 14, 647–659.
CrossRef |

Resh, V. H., Brown, A. V., Covich, A. P., Gurtz, M. E., Li, H. W., et al. (1988). The role of disturbance in stream ecology. Journal of the North American Benthological Society 7, 433–455.
CrossRef |

Richards, C., and Bacon, K. L. (1994). Influence of fine sediment on macroinvertebrate colonisation of surface and hyporheic stream substrates. Great Basin Naturalist 54, 106–113.

Robertson, A., and Wood, P. J. (2010). Ecology of the hyporheic zone: origins, current knowledge and future directions. Fundamental and Applied Limnology. Archiv fuer Hydrobiologie 176, 279–289.

Robertson, A. L., Lancaster, J., and Hildrew, A. G. (1995). Stream hydraulics and the distribution of microcrustacea: a role for refugia? Freshwater Biology 33, 469–484.
CrossRef |

Schellenberg, E. T., Hartmann, U., Zah, R., and Meyer, E. I. (2001). Response of the epibenthic and hyporheic invertebrates to stream drying in a prealpine river. Verhandlungen – Internationale Vereinigung für Theoretische und Angewandte Limnologie 27, 3733–3737.

Schmid-Araya, J. M. (1995). Disturbance and population dynamics of rotifers in bed sediments. Hydrobiologia 313-314, 279–290.
CrossRef |

Schmid-Araya, J. M. (2000). Invertebrate recolonization patterns in the hyporheic zone of a gravel stream. Limnology and Oceanography 45, 1000–1005.
CrossRef |

Schwoerbel, J. (1961). Über die lebensbedingungen und die besiedlung des hyporheischen lebensraumes. Archiv für Hydrobiologie Supplementband 25, 182–214.

Schwoerbel, J. (1962). Hyporheische besiedlung geröllführender hochgebirgsbäche mit bewegter stromsohle. Naturwissenschaften 49, 67.
CrossRef |

Schwoerbel, J. (1964). Die ßedeutung des hyporheals für die benthische lebensgemeinschaft der fließgewässer. Verhandlungen der Internationalen Vereinigung fuer theoretische und angewandte Limnologie XV, 215–226.

Schwoerbel, J. (1967). Das hyporheische interstitial als grenzbiotop zwischen oberirdischem- und subterranem ökosystem und seine bedeutung für die primär-Evolution von kleinsthöhlenbewohnerm. Archiv für Hydrobiologie Supplementband 33, 1–62.

Sedell, J. R., Reeves, G. H., Hauer, F. R., Stanford, J. A., and Hawkins, C. P. (1990). Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Environmental Management 14, 711–724.
CrossRef |

Smith, J. W. N. (2005). Groundwater-surface water interactions in the hyporheic zone. Environment Agency. Report SC030155/SR1, pp. 1–65.

Smock, L. A., Smith, L. C., Jones, J. B., and Hooper, S. M. (1994). Effects of drought and a hurricane on a coastal headwater stream. Archiv fuer Hydrobiologie 131, 25–38.

Stanford, J. A., and Gaufin, A. R. (1974). Hyporheic communities of two Montana rivers. Science 185, 700–702.
CrossRef | CAS |

Stanford, J. A., and Ward, J. V. (1993). An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. Journal of the North American Benthological Society 12, 48–60.
CrossRef |

Stanley, E. H., and Boulton, A. J. (1993). Hydrology and the distribution of hyporheos: perspectives from a mesic river and a desert stream. Journal of the North American Benthological Society 12, 79–83.
CrossRef |

Stanley, E. H., Buschman, D. L., Boulton, A. J., Grimm, N. B., and Fisher, S. G. (1994). Invertebrate resistance and resilience to intermittency in a desert stream. American Midland Naturalist 131, 288–300.
CrossRef |

Statzner, B. (2008). How views about flow adaptations of benthhic stream invertebrates changed over the last century. International Review of Hydrobiology 93, 593–605.
CrossRef |

Statzner, B., Gore, J. A., and Resh, V. H. (1988). Hydraulic stream ecology: observed patterns and potential applications. Journal of the North American Benthological Society 7, 307–360.
CrossRef |

Stead, T. K., Schmid-Araya, J. M., and Hildrew, A. G. (2004). The contribution of subsurface invertebrates to benthic density and biomass in a gravel stream. Archiv fur Hydrobiologie 160, 171–191.

Stead, T. K., Schmid-Araya, J. M., and Hildrew, A. G. (2005). Secondary production of a stream metazoan community: does the meiofauna make a difference? Limnology and Oceanography 50, 398–403.
CrossRef |

Strommer, J. L., and Smock, L. A. (1989). Vertical distribution and abundance of invertebrates within the sandy substrate of a low gradient headwater stream. Freshwater Biology 22, 263–274.

Stubbington, R., Wood, P. J., and Boulton, A. J. (2009a). Low flow controls on benthic and hyporheic macroinvertebrate assemblages during supra seasonal drought. Hydrological Processes 23, 2252–2263.
CrossRef |

Stubbington, R., Greenwood, A. M., Wood, P. J., Armitage, P. D., and Gunn, J. (2009b). The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. Hydrobiologia 630, 299–312.
CrossRef |

Stubbington, R., Wood, P., and Reid, I. (2010a). Contrasting use of hyporheic habitat by benthic invertebrates during spate and low flows. In ‘Proceedings of the 3rd International Symposium. Managing Consequences of a Changing Global Environment’. pp. 1–6. (British Hydrological Society: Newcastle University.)

Stubbington, R., Wood, P. J., Reid, I., and Gunn, J. (2010b). Benthic and hyporheic invertebrate community responses to seasonal flow recession in a groundwater-dominated stream. Ecohydrology 4, 500–511.
CrossRef |

Stubbington, R., Wood, P. J., Reid, I., and Gunn, J. (2011). Spatial variability in the hyporheic zone refugium of temporary streams. Aquatic Sciences , .
CrossRef |

Tabacchi, E., Decamps, H., and Thomas, A. (1993). Substrate interstices as habitat for larval Thraulus bellus (Ephemeroptera) in a temporary floodplain pond. Freshwater Biology 29, 429–439.
CrossRef |

Thibodeaux, L. J., and Boyle, J. D. (1987). Bedform-generated convective transport in bottom sediment. Nature 325, 341–343.
CrossRef |

Thorp, J. H., Thoms, M. C., and Delong, M. D. (2006). The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Research and Applications 22, 123–147.
CrossRef |

Tonina, D., and Buffington, J. M. (2007). Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modelling. Water Resources Research 43, W01421.
CrossRef |

Tonina, D., and Buffington, J. M. (2009). Hyporheic exchange in mountain rivers I: Mechanics and environmental effects. Geography Compass 3, 1063–1086.
CrossRef |

Toth, J. (1963). A theoretical analysis of groundwater flow in small drainage basins. Journal of Geophysical Research 68, 4795–4812.

Townsend, C. R. (1989). The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society 8, 36–50.
CrossRef |

Townsend, C. R., and Hildrew, A. G. (1994). Species traits in relation to a habitat templet for river systems. Freshwater Biology 31, 265–275.
CrossRef |

Townsend, C. R., and Riley, R. H. (1999). Assessment of river health: accounting for perturbation pathways in physical and ecological space. Freshwater Biology 41, 393–405.
CrossRef |

Townsend, C. R., Doledec, S., and Scarsbrook, M. R. (1997a). Species traits in relation to temporal and spatial heterogeneity in streams: a test of habitat templet theory. Freshwater Biology 37, 367–387.
CrossRef |

Townsend, C. R., Scarsbrook, M. R., and Doledec, S. (1997b). The intermediate disturbance hypothesis, refugia and biodiversity in streams. Limnology and Oceanography 42, 938–949.
CrossRef |

Triska, F., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., and Bencala, K. E. (1989). Retention and transport of nutrient in a third-order stream in Northwestern California: hyporheic processes. Ecology 70, 1893–1905.
CrossRef |

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The ‘river continuum concept’. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
CrossRef |

Vaux, W. G. (1968). Intragravel flow and interchange of water in a streambed. Fishery Bulletin 66, 479–489.

Wagner, F. H., and Feio, M. J. (2001). Abundance versus activity of invertebrates in the hyporheic zone – two hypotheses. In ‘Groundwater Ecology. A Tool for Management of Water Resources’. (Eds C. Griebler, D. L. Danielopol, J. Gibert, H. P. Nachtnebel and J. Notenboom) pp. 363–367 (Official publications of the European Communities: Luxembourg.)

Wagner, R., Schmidt, H. H., and Marxsen, J. (1993). The hyporheic habitat of the Breitenbach, spatial structure and physicochemical conditions as a basis for benthic life. Limnologica 23, 285–294.
| CAS |

Wallace, J. B. (1990). Recovery of lotic macroinvertebrate communities from disturbance. Environmental Management 14, 605–620.
CrossRef |

Wallace, R. R., West, A. S., Downe, A. E. R., and Hynes, H. B. N. (1973). The effects of experimental blackfly (Diptera; Simuliiidae) larviciding with abate, dursban and methoxychlor on stream invertebrates. Canadian Entomologist 105, 817–831.
CrossRef | CAS |

Ward, J. V. (1994). The structure and dynamics of lotic ecosystems, In ‘Limnology Now: a Paradigm of Planetary Problems’. (Ed. R. Margalef.) pp. 195–218. (Elsevier Science: Amsterdam.)

White, D. S. (1993). Perspectives on defining and delineating hyporheic zones. Journal of the North American Benthological Society 12, 61–69.
CrossRef |

Whitman, R. L., and Clark, W. J. (1984). Ecological studies of the sand-dwelling community of an East Texas stream. Freshwater Invertebrate Biology 3, 59–79.
CrossRef |

Williams, D. D. (1977). Movements of benthos during the recolonisation of temporary streams. Oikos 29, 306–312.
CrossRef |

Williams, D. D. (1981). Migrations and distributions of stream benthos. In ‘Perspectives in Running Water Ecology’. (Eds M. A. Lock and D. D. Williams.) pp. 155–208. (Plenum Publishers: New York.)

Williams, D. D. (1984). The hyporheic zone as a habitat for aquatic insects and associated arthropods. In ‘The Ecology of Aquatic Insects’. (Eds V. H. Resh and D. M. Rosenberg.) pp. 430–455. (Praeger Publishers: New York.)

Williams, D. D. (Ed.) (1987). ‘The Ecology of Temporary Waters.’ (Croom-Helm: London.)

Williams, D. D., and Hynes, H. B. N. (1974). The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4, 233–256.
CrossRef |

Williams, D. D., and Hynes, H. B. N. (1976). The recolonization mechanisms of stream benthos. Oikos 27, 265–272.
CrossRef |

Wondzell, S. M. (2006). Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrological Processes 20, 267–287.
CrossRef |

Wondzell, S. M., and Swanson, F. J. (1999). Floods, channel change and the hyporheic zone. Water Resources Research 35, 555–567.
CrossRef | CAS |

Wood, P. J., Boulton, A. J., Little, S., and Stubbington, R. (2010). Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundamental and Applied Limnology 176, 377–390.
CrossRef |

Wörman, A., Packman, A. I., Marklund, L., Harvey, J. W., and Stone, S. (2006). Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophysical Research Letters 33, L07402.
CrossRef |

Wroblicky, G. J., Campana, M. E., Valett, H. M., and Dahm, C. N. (1998). Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resources Research 34, 317–328.
CrossRef |

Yount, J. D., and Niemi, G. J. (1990). Recovery of lotic communities and ecosystems from disturbance – a narrative review of case studies. Environmental Management 14, 547–569.
CrossRef |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014