CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 65(11)

Does coastal topography constrain marine biogeography at an oceanographic interface?

Jonathan M. Waters A D , Scott A. Condie B and Luciano B. Beheregaray C

A Allan Wilson Centre for Molecular Ecology and Evolution, Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
B CSIRO Wealth from Oceans Flagship, GPO Box 1538, Hobart, Tas. 7001, Australia.
C Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia.
D Corresponding author. Email: jon.waters@otago.ac.nz

Marine and Freshwater Research 65(11) 969-977 http://dx.doi.org/10.1071/MF13307
Submitted: 21 November 2013  Accepted: 24 January 2014   Published: 7 July 2014


 
PDF (1.3 MB) $25
 Export Citation
 Print
  
Abstract

Our understanding of the physical factors driving fine-scale structuring of marine biodiversity remains incomplete. Recent studies have hypothesised that oceanography and coastal geometry interact to influence marine biogeographic structure on small spatial scales. The coastal waters of eastern Tasmania, located at the oceanographic interface between two major boundary current systems (the East Australia Current (EAC) and the Leeuwin Current (LC)) represent an informative system for assessing this hypothesis. Parallel biogeographic and oceanographic analyses, focusing on the relative abundance of two widespread, larval-dispersed Nerita gastropods, suggest that the relative influences of the EAC and LC at this interface are modulated by coastal topographical variation. Specifically, east-facing coastal sites are dominated by the EAC-derived N. melanotragus, whereas south-facing bays are dominated by LC-derived N. atramentosa. These combined oceanographic and biological data imply that coastal topography and hydrodynamics can combine to influence the local distributions and abundances of planktotrophic-developing taxa at coastal convergence zones.

Additional keywords: boundary current, climate change, connectivity, conservation, dispersal, invasion, marine invertebrate, marine protected areas (MPAs), recruitment.


References

Archambault, P., and Bourget, E. (1999). Influence of shoreline configuration on spatial variation of meroplanktonic larvae, recruitment and diversity of benthic subtidal communities. Journal of Experimental Marine Biology and Ecology 238, 161–184.
CrossRef |

Banks, S. C., Piggott, M., Williamson, J., Bove, U., Holbrook, N., and Beheregaray, L. B. (2007). Oceanic variability and coastal topography shape local genetic structure in a long-dispersing marine invertebrate. Ecology 88, 3055–3064.
CrossRef | PubMed |

Bates, D., and Maechler, M. (2009). ‘lme4: Linear Mixed-effects Models using S4 Classes, R Package, Version 0.999999-2.’ Available at http://CRAN.R-project.org/package=lme4

Brassington, G. B., Pugh, T., Spillman, C., Schulz, E., Beggs, H., Schiller, A., and Oke, P. R. (2007). BLUElink development of operational oceanography and servicing in Australia. Journal of Research and Practice in Information Technology 39, 151–164.

Bucklin, A., Kaartvedt, S., Guarnieri, M., and Goswami, U. (2000). Population genetics of drifting (Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords. Journal of Plankton Research 22, 1237–1251.
CrossRef | CAS |

Condie, S. A. (2011). Modeling seasonal circulation, upwelling and tidal mixing in the Arafura and Timor Seas. Continental Shelf Research 31, 1427–1436.
CrossRef |

Condie, S. A., and Dunn, J. R. (2006). Seasonal characteristics of the surface mixed layer in the Australasian region: implications for primary production regimes and biogeography. Marine and Freshwater Research 57, 569–590.
CrossRef | CAS |

Condie, S. A., and Sherwood, C. R. (2006). Sediment distribution and transport across the continental shelf and slope under idealized wind forcing. Progress in Oceanography 70, 255–270.
CrossRef |

Condie, S. A., Mansbridge, J. V., and Cahill, M. L. (2011). Contrasting local retention and cross-shore transports of the East Australian Current and the Leeuwin Current and their relative influences on the life histories of small pelagic fishes. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 606–615.
CrossRef |

Dawson, M. N. (2001). Phylogeography in coastal marine animals: a solution from coastal California? Journal of Biogeography 28, 723–736.
CrossRef |

Eanes, R., and Bettadpur, S. (1995). The CSR 3.0 global ocean tide model. Technical memorandum, CST-TM-95-06. Center for Space Research.

Gaines, S. D., and Roughgarden, J. (1985). Larval settlement rate: a leading determinant of structure in an ecological community of the marine intertidal zone. Proceedings of the National Academy of Sciences, USA 82, 3707–3711.
CrossRef | CAS |

Gaylord, B., and Gaines, S. D. (2000). Temperature or transport? Range limits in marine species mediated solely by flow. American Naturalist 155, 769–789.
CrossRef | PubMed |

Graham, W. M., and Largier, J. L. (1997). Upwelling shadows as nearshore retention sites: the example of northern Monterey Bay Continental Shelf Research 17, 509–532.
CrossRef |

Guichard, F., Bourget, E., and Robert, J.-L. (2001). Scaling the influence of topographic heterogeneity on intertidal benthic communities: alternate trajectories mediated by hydrodynamics and shading. Marine Ecology Progress Series 217, 27–41.
CrossRef |

Herzfeld, M. (2006). An alternative coordinate system for solving finite difference ocean models. Ocean Modelling 14, 174–196.
CrossRef |

Herzfeld, M. (2009). Improving stability of regional numerical ocean models. Ocean Dynamics 59, 21–46.
CrossRef |

Hidas, E. Z., Ayre, D. J., and Minchinton, T. E. (2010). Patterns of demography for rocky-shore, intertidal invertebrates approaching their geographical range limits: tests of the abundant-centre hypothesis in south-eastern Australia. Marine and Freshwater Research 61, 1243–1251.
CrossRef | CAS |

Lagos, N. A., Navarrete, S. A., Véliz, F., Masuero, A., and Castilla, J. C. (2005). Meso-scale spatial variation in settlement and recruitment of intertidal barnacles along the coast of central Chile. Marine Ecology Progress Series 290, 165–178.
CrossRef |

Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., and Pecl, G. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography 20, 58–72.
CrossRef |

Ling, S. D. (2008). Range-expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia 156, 883–894.
CrossRef | CAS | PubMed |

Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J., and Haddon, M. (2009). Climate driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
CrossRef |

McCulloch, A., and Shanks, A. L. (2003). Topographically generated fronts, very nearshore oceanography and the distribution and settlement of mussel larvae and barnacle cyprids. Journal of Plankton Research 25, 1427–1439.
CrossRef |

Perrin, C., Wing, S. R., and Roy, M. S. (2004). Effects of hydrographic barriers on population genetic structure of the sea star Coscinasterias muricata (Echinodermata, Asteroidea) in the New Zealand fiords. Molecular Ecology 13, 2183–2195.
CrossRef | CAS | PubMed |

Pielke, R. A., Cotton, W. R., Walco, R. L., Tremback, C. J., Lyons, W. A., Grasso, L. D., Nicholls, M. E., Moran, M. D., Wesley, D. A., Lee, T. J., and Copeland, J. H. (1992). A comprehensive meteorological modelling system – RAMS. Meteorology and Atmospheric Physics 49, 69–91.
CrossRef |

Pitt, N. R., Poloczanska, E. S., and Hobday, A. J. (2010). Climate-driven range changes in Tasmanian intertidal fauna. Marine and Freshwater Research 61, 963–970.
CrossRef | CAS |

Ridgway, K. R. (2007a). Seasonal circulation around Tasmania: an interface between eastern and western boundary dynamics. Journal of Geophysical Research 112, C10016.
CrossRef |

Ridgway, K. R. (2007b). Long-term trend and decadal variability in the southward penetration of the East Australian Current. Geophysical Research Letters 34, L13613.
CrossRef |

Ridgway, K. R., and Condie, S. A. (2004). The 5500-km long boundary flow off western and southern Australia. Journal of Geophysical Research 109, C04017.
CrossRef |

Sabatés, A. (1990). Distribution pattern of larval fish populations in the northwestern Mediterranean. Marine Ecology Progress Series 59, 75–82.
CrossRef |

Schiller, A., Oke, P. R., Brassington, G., Entel, M., Fiedler, R., Griffin, D. A., and Mansbridge, J. V. (2008). Eddy-resolving ocean circulation in the Asian–Australian region inferred from an ocean reanalysis effort. Progress in Oceanography 76, 334–365.
CrossRef |

Spencer, H. G., Waters, J. M., and Eichhorst, T. E. (2007). Taxonomy and nomenclature of black nerites (Gastropoda: Neritimorpha: Nerita) from the South Pacific. Invertebrate Systematics 21, 229–237.
CrossRef |

Underwood, A. J. (1975). Comparative studies on the biology of Nerita atramentosa Reeve, Bembicium nanum (Lamarck) and Cellana tramoserica (Sowerby) (Gastropoda: Prosobranchia) in SE Australia. Journal of Experimental Marine Biology and Ecology 18, 153–172.
CrossRef |

Underwood, A. J., and Chapman, M. G. (1996). Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107, 212–224.
CrossRef |

Underwood, A. J., and Fairweather, P. G. (1989). Supply-side ecology and benthic marine assemblages. Trends in Ecology & Evolution 4, 16–20.
CrossRef | CAS |

Wares, J. P. (2002). Community genetics in the northwestern Atlantic intertidal. Molecular Ecology 11, 1131–1144.
CrossRef | CAS | PubMed |

Waters, J. M. (2008). Marine biogeographical disjunction in temperate Australia: historical landbridge, contemporary currents, or both? Diversity & Distributions 14, 692–700.
CrossRef |

Waters, J. M., King, T. M., O'Loughlin, P. M., and Spencer, H. G. (2005). Phylogeographic disjunction in abundant high-dispersal littoral gastropods. Molecular Ecology 14, 2789–2802.
CrossRef | CAS | PubMed |

Wernberg, T., Russell, B. D., Thomsen, M. S., Gurgel, C. F. D., Bradshaw, C. J. A., Poloczanska, E. S., and Connell, S. D. (2011). Seaweed communities in retreat from ocean warming. Current Biology 21, 1828–1832.
CrossRef | CAS | PubMed |

Wolanski, E., and Hamner, W. (1988). Topographically controlled fronts in the ocean and their biological influence. Science 241, 177–181.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014