Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Parental contribution to progeny during experimental spawning of jungle perch, Kuhlia rupestris

M. L. Hoskin A D , M. J. Hutchison C , A. C. Barnes A , J. R. Ovenden B and L. C. Pope A
+ Author Affiliations
- Author Affiliations

A The University of Queensland, School of Biological Sciences, Brisbane, Qld 4072, Australia.

B The University of Queensland, School of Biomedical Sciences, Brisbane, Qld 4072, Australia.

C Queensland Department of Agriculture, Fisheries and Forestry, Bribie Island Research Centre, 144 North Street, Woorim, Qld 4507, Australia.

D Corresponding author. Email: matthew.hoskin@uqconnect.edu.au

Marine and Freshwater Research 66(4) 375-380 https://doi.org/10.1071/MF13313
Submitted: 27 November 2013  Accepted: 20 August 2014   Published: 9 December 2014

Abstract

When releasing captive-bred animals into wild populations, it is essential to maintain the capacity for adaptation and resilience by minimising the effect on population genetic diversity. Populations of the jungle perch (Kuhlia rupestris) have become reduced or locally extinct along the Queensland coast; thus, captive breeding of K. rupestris for restocking is presently underway. Currently, multiple individuals are placed in a tank to produce larvae, yet the number of adults contributing to larval production is unknown. We performed a power analysis on pre-existing microsatellite loci to determine the minimum number of loci and larvae required to achieve accurate assignment of parentage. These loci were then used to determine the number of contributing participants during a series of four spawning events through the summer breeding season in 2012–2013. Not all fish contributed to larval production and no relationship was found between male body size and parentage success. In most cases, there was a high skew of offspring to one mating pair (62% was the average contribution of the most successful pair per tank). This has significant implications for the aquaculture, restocking and conservation of K. rupestris.

Additional keywords: conservation, fish, genetics, restoration.


References

Araki, H., Cooper, B., and Blouin, M. S. (2009). Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biology Letters 5, 621–624.
Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild.Crossref | GoogleScholarGoogle Scholar | 19515651PubMed |

Borrell, Y. J., Alvarez, J., Blanco, G., de Murguía, A. M., Lee, D., Fernández, C., Martínez, C., Cotano, U., Álvarez, P., and Prado, J. A. S. (2011). A parentage study using microsatellite loci in a pilot project for aquaculture of the European anchovy Engraulis encrasicolus L. Aquaculture 310, 305–311.
A parentage study using microsatellite loci in a pilot project for aquaculture of the European anchovy Engraulis encrasicolus L.Crossref | GoogleScholarGoogle Scholar |

Champagnon, J., Elmberg, J., Guillemain, M., Gauthier-Clerc, M., and Lebreton, J. D. (2012). Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates. Journal for Nature Conservation 20, 231–241.
Conspecifics can be aliens too: a review of effects of restocking practices in vertebrates.Crossref | GoogleScholarGoogle Scholar |

Chapin, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M. C., and Diaz, S. (2000). Consequences of changing biodiversity. Nature 405, 234–242.
Consequences of changing biodiversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjsFyjsL8%3D&md5=54fa88ff685f917d86a46eb526451f37CAS | 10821284PubMed |

Christie, M. R., Marine, M. L., French, R. A., Waples, R. S., and Blouin, M. S. (2012). Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109, 254–260.
Effective size of a wild salmonid population is greatly reduced by hatchery supplementation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38fgslKrsA%3D%3D&md5=733bca03c6371ebbafbfd3d2602f71caCAS | 22805657PubMed |

de Mestral, L. G., O’Reilly, P. T., Jones, R., Flanagan, J., and Herbinger, C. M. (2013). Preliminary assessment of the environmental and selective effects of a captive breeding and rearing programme for endangered Atlantic salmon, Salmo salar. Fisheries Management and Ecology 20, 75–89.
Preliminary assessment of the environmental and selective effects of a captive breeding and rearing programme for endangered Atlantic salmon, Salmo salar.Crossref | GoogleScholarGoogle Scholar |

Estoup, A., Largiader, C. R., Perrot, E., and Chourrout, D. (1996). Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Molecular Marine Biology and Biotechnology 5, 295–298.
| 1:CAS:528:DyaK2sXislyhtw%3D%3D&md5=ce907b162a46541517a41df75f769521CAS |

Feutry, P., Tabouret, H., Maeda, K., Pecheyran, C., and Keith, P. (2012a). Diadromous life cycle and behavioural plasticity in freshwater and estuarine Kuhliidae species (Teleostei) revealed by otolith microchemistry. Aquatic Biology 15, 195–204.
Diadromous life cycle and behavioural plasticity in freshwater and estuarine Kuhliidae species (Teleostei) revealed by otolith microchemistry.Crossref | GoogleScholarGoogle Scholar |

Feutry, P., Valade, P., Ovenden, J. R., Lopez, P. J., and Keith, P. (2012b). Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from Indo-Pacific insular systems. Marine and Freshwater Research 63, 397–402.
Pelagic larval duration of two diadromous species of Kuhliidae (Teleostei: Percoidei) from Indo-Pacific insular systems.Crossref | GoogleScholarGoogle Scholar |

Feutry, P., Vergnes, A., Broderick, D., Lambourdiere, J., Keith, P., and Ovenden, J. R. (2013). Stretched to the limit; can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)? Molecular Ecology 22, 1518–1530.
Stretched to the limit; can a short pelagic larval duration connect adult populations of an Indo-Pacific diadromous fish (Kuhlia rupestris)?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3nt1Knug%3D%3D&md5=d13b237d60ca20afa48299cb1de335e3CAS | 23294379PubMed |

Frost, L. A., Evans, B. S., and Jerry, D. R. (2006). Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer). Aquaculture 261, 1056–1064.
Loss of genetic diversity due to hatchery culture practices in barramundi (Lates calcarifer).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFOiu7jI&md5=9d9bf21bbfc2b193edd5e58d35b1cbf9CAS |

Hearne, C. M., Ghosh, S., and Todd, J. A. (1992). Microsatellites for linkage analysis of genetic-traits. Trends in Genetics 8, 288–294.
Microsatellites for linkage analysis of genetic-traits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xls1Crur0%3D&md5=e817be63a9b19deb3e94e1f97790ab8fCAS | 1509520PubMed |

Herbert, B., and Peeters, H., and Queensland Department of Primary Industries (1995). ‘Freshwater Fishes of Far North Queensland.’ (Queensland Department of Primary Industries: Brisbane.)

Hogan, A. E., and Nicholson, J. C. (1987). Sperm motility of sooty grunter, Hephaestus fuliginosus (Macleay), and jungle perch, Kuhlia rupestris (Lacepede), in different salinities. Australian Journal of Marine and Freshwater Research 38, 523–528.
Sperm motility of sooty grunter, Hephaestus fuliginosus (Macleay), and jungle perch, Kuhlia rupestris (Lacepede), in different salinities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmtFGisbg%3D&md5=ce0dba3088e9523a4850189135dc9aaaCAS |

Hold, N., Murray, L. G., Kaiser, M. J., Hinz, H., Beaumont, A. R., and Taylor, M. I. (2013). Potential effects of stock enhancement with hatchery-reared seed on genetic diversity and effective population size. Canadian Journal of Fisheries and Aquatic Sciences 70, 330–338.
Potential effects of stock enhancement with hatchery-reared seed on genetic diversity and effective population size.Crossref | GoogleScholarGoogle Scholar |

Hutchison, M., Simpson, R., Elizur, A., Willett, D., and Collins, A. (2002). Restoring jungle perch (Kuhlia rupestris) recreational fisheries to South-east Queensland. A pilot study. Department of Primary Industries, Brisbane.

Jones, A. G., and Ardren, W. R. (2003). Methods of parentage analysis in natural populations. Molecular Ecology 12, 2511–2523.
Methods of parentage analysis in natural populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXht1Kqtbg%3D&md5=95bd3f72017b28dffedc39da43127b1cCAS | 12969458PubMed |

Jones, A. G., Small, C. M., Paczolt, K. A., and Ratterman, N. L. (2010). A practical guide to methods of parentage analysis. Molecular Ecology Resources 10, 6–30.
A practical guide to methods of parentage analysis.Crossref | GoogleScholarGoogle Scholar | 21564987PubMed |

Kalinowski, S. T., Taper, M. L., and Marshall, T. C. (2007). Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099–1106.
Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment.Crossref | GoogleScholarGoogle Scholar | 17305863PubMed |

Keller, M., Kollmann, J., and Edwards, P. J. (2000). Genetic introgression from distant provenances reduces fitness in local weed populations. Journal of Applied Ecology 37, 647–659.
Genetic introgression from distant provenances reduces fitness in local weed populations.Crossref | GoogleScholarGoogle Scholar |

Kugler, K. G., Mueller, L. A., and Graber, A. (2010). MADAM – an open source meta-analysis toolbox for R and Bioconductor. Source Code for Biology and Medicine 5, 3.
MADAM – an open source meta-analysis toolbox for R and Bioconductor.Crossref | GoogleScholarGoogle Scholar | 20193058PubMed |

Laikre, L., Schwartz, M. K., Waples, R. S., Ryman, N., and Ge, M. W. G. (2010). Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends in Ecology & Evolution 25, 520–529.
Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals.Crossref | GoogleScholarGoogle Scholar |

Peters, M. B., Ovenden, J. R., Broderick, D., Lance, S. L., Hagen, C., and Glenn, T. C. (2009). Fifteen microsatellite loci for the jungle perch, Kuhlia rupestris. Molecular Ecology Resources 9, 1467–1469.
Fifteen microsatellite loci for the jungle perch, Kuhlia rupestris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVKhurjL&md5=8db9d8669d5cab06648b80bed991ff73CAS | 21564934PubMed |

Purcell, S. W., and Kirby, D. S. (2006). Restocking the sea cucumber Holothuria scabra: Sizing no-take zones through individual-based movement modelling. Fisheries Research 80, 53–61.
Restocking the sea cucumber Holothuria scabra: Sizing no-take zones through individual-based movement modelling.Crossref | GoogleScholarGoogle Scholar |

Pusey, B., Kennard, M., and Arthington, A. (2004). ‘Freshwater Fishes of North-eastern Australia.’ (CSIRO: Melbourne.)

R Core Team (2014). R: a language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria.) Available at http://www.R-project.org/ [Verified 11 November 2014].

Reisenbichler, R. R., and Rubin, S. P. (1999). Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations. ICES Journal of Marine Science 56, 459–466.
Genetic changes from artificial propagation of Pacific salmon affect the productivity and viability of supplemented populations.Crossref | GoogleScholarGoogle Scholar |

Roche, E. A., Cuthbert, F. J., and Arnold, T. W. (2008). Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population? Biological Conservation 141, 3079–3088.
Relative fitness of wild and captive-reared piping plovers: does egg salvage contribute to recovery of the endangered Great Lakes population?Crossref | GoogleScholarGoogle Scholar |

Rourke, M. L., McPartlan, H. C., Ingram, B. A., and Taylor, A. C. (2009). Polygamy and low effective population size in a captive Murray cod (Maccullochella peelii peelii) population: genetic implications for wild restocking programs. Marine and Freshwater Research 60, 873–883.
Polygamy and low effective population size in a captive Murray cod (Maccullochella peelii peelii) population: genetic implications for wild restocking programs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVGju7jF&md5=c39e4156c81d4a6f307796f1680c14ebCAS |

Rowland, S. J., and Tully, P. (2004). ‘Hatchery Quality Assurance Program for Murray Cod (Maccullochella peelii peelii), Golden Perch (Macquaria ambigua) and Silver Perch (Bidyanus bidyanus).’ (NSW Department of Primary Industries: Taylors Beach, NSW.)

Samoilys, M. A. (1997). Periodicity of spawning aggregations of coral trout Plectropomus leopardus (Pisces: Serranidae) on the northern Great Barrier Reef. Marine Ecology Progress Series 160, 149–159.
Periodicity of spawning aggregations of coral trout Plectropomus leopardus (Pisces: Serranidae) on the northern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |