CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn


Article << Previous     |     Next >>   Contents Vol 66(2)

Structural complexity and turbidity do not interact to influence predation rate and prey selectivity by a small visually feeding fish

Bruno R. S. Figueiredo A C , Roger P. Mormul A B and Evanilde Benedito A B

A Programa de Pós-graduação em Ecologia de Ambientes Aquáticos Continentais, Núcleo de Pesquisa em Limnologia, Ictiologia e Aquicultura (Nupélia), Universidade Estadual de Maringá, Avenida Colombo, 5790, Bloco H-90, Maringá, PR, CEP 87020-900, Brazil.
B Programa de Pós-graduação em Biologia Comparada, Universidade Estadual de Maringá, Avenida Colombo, 5790, Bloco G-80, Maringá, PR, CEP 87020-900, Brazil.
C Corresponding author. Email: figueiredo.biologo@gmail.com

Marine and Freshwater Research 66(2) 170-176 http://dx.doi.org/10.1071/MF14030
Submitted: 1 October 2013  Accepted: 3 June 2014   Published: 14 October 2014

PDF (442 KB) $25
 Export Citation

Structural complexity and turbidity decrease predation by respectively providing a physical and visual refuge for prey. It is still unclear how the covariance between these variables could drive predation and prey selectivity. We experimentally simulated scenarios that are temporally observed in floodplain rivers. In the experiments, we crossed different prey types, structural complexity and turbidity. We hypothesised that the negative relationship between structural complexity and predation would become stronger with a linear increase in the turbidity level and that an increase in structural complexity and in turbidity would change prey selectivity from a selective to a random pattern. Our results showed that the effects of structural complexity and turbidity on predation may not covary; a linear increase in turbidity did not significantly change the patterns of predation or prey selectivity. In contrast, structural complexity significantly reduced prey consumption according to prey size. We argue that areas with low macrophyte cover may provide an efficient refuge for smaller prey, whereas an efficient refuge for larger prey can be attained only in areas with high macrophyte cover. In highly complex habitats, specificity in prey consumption is precluded because both prey species can hide amid the interstices of the macrophytes, leading to random prey selectivity.

Additional keywords: environmental shifts, invertivorous, predator–prey interaction, submerged macrophytes, visual predation.


Agostinho, A. A., Thomaz, S. M., Gomes, L. C., and Baltar, S. L. S. M. A. (2007). Influence of the macrophytes Eichhornia azurea on fish assemblage of the upper Paraná River floodplain (Brazil). Aquatic Ecology 41, 611–619.
CrossRef | CAS |

Aksnes, D. L., and Utne, A. C. W. (1997). A revised model of visual range in fish. Sarsia 82, 137–147.

Allen-Ankins, S., Stoffels, R. J., Pridmore, P. A., and Vogel, M. T. (2012). The effects of turbidity, prey density and environmental complexity on the feeding of juvenile Murray cod Maccullochella peelii. Journal of Fish Biology 80, 195–206.
CrossRef | CAS | PubMed |

Banks, P. B., Norrdahl, K., and Korpimäki, E. (2000). Nonlinearity in the predation risk of prey mobility. Proceedings. Biological Sciences 267, 1621–1625.
CrossRef | CAS |

Brönmark, C., and Hansson, L. A. (2012). ‘Chemical Ecology in Aquatic Systems.’ (University Press: New York.)

Carter, M. W., Shoup, D. E., Dettmers, J. M., and Wahl, D. H. (2010). Effects of turbidity and cover on prey selectivity of adult smallmouth bass. Transactions of the American Fisheries Society 139, 353–361.
CrossRef |

Casatti, L., Mendes, H. F., and Ferreira, K. M. (2003). Aquatic macrophytes as feeding site for small fishes in the Rosana Reservoir, Paranapanema River, southeastern Brazil. Brazilian Journal of Biology 63, 213–222.
CrossRef | CAS |

Confer, J. L., Howick, G. L., Corzette, M. H., Kramer, S. L., Fitzgibbon, S., and Landesberg, R. (1978). Visual predation by planktivores. Oikos 31, 27–37.
CrossRef |

Cripa, V. E. L., Hahn, N. S., and Fugi, R. (2009). Food resource used by small-sized fish in macrophyte patches in ponds of the upper Paraná River. Acta Scientiarum, Biological Sciences 31, 119–125.

De Robertis, A., Ryer, C. H., Veloza, A., and Brodeur, R. D. (2003). Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 60, 1517–1526.
CrossRef |

Diehl, S. (1988). Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53, 207–214.
CrossRef |

Dörner, H., and Wagner, A. (2003). Size dependent predator–prey relationships between perch and their fish prey. Journal of Fish Biology 62, 1021–1032.
CrossRef |

Dowdy, S., Wearden, S., and Chilko, D. (2004). ‘Statistics for Research.’ (Wiley: Hoboken, NJ, USA.)

Engström-Öst, J., Lehtiniemi, M., Jónasdóttir, S. H., and Viitasalo, M. (2005). Growth of pike larvae (Esox lucius) under different conditions of food quality and salinity. Ecology Freshwater Fish 14, 385–393.
CrossRef |

Figueiredo, B. R. S., Mormul, R. P., and Benedito, E. (2013). Non-additive effects of macrophyte cover and turbidity on predator–prey interactions involving an invertivorous fish and different prey types. Hydrobiologia 716, 21–28.
CrossRef | CAS |

Gardner, M. B. (1981). Effects of turbidity on feeding rates and selectivity of bluegills. Transactions of the American Fisheries Society 110, 446–450.
CrossRef |

Gradall, K. S., and Swenson, W. A. (1982). Responses of brook trout and creek chubs to turbidity. Transactions of the American Fisheries Society 111, 392–395.
CrossRef |

Gray, S. M., Sabbah, S., and Hawryshyn, C. W. (2011). Experimentally increased turbidity causes behavioural shifts in Lake Malawi cichlids. Ecology Freshwater Fish 20, 529–536.
CrossRef |

Gregory, R. S., and Levings, C. D. (1996). The effects of turbidity and vegetation on the risk of juvenile salmonids, Oncorhynchus spp., to predation by adult cutthroat trout O. clarki. Environmental Biology of Fishes 47, 279–288.
CrossRef |

Grenouillet, G., and Pont, D. (2001). Juvenile fishes in macrophyte beds: influence of food resources, habitat structure and body size. Journal of Fish Biology 59, 939–959.
CrossRef |

Griffiths, D. (1980). Foraging costs and relative prey size. American Naturalist 116, 743–752.
CrossRef |

Heck, K. L., Jr, and Crowder, L. V. (1991). Habitat structure and predator–prey interactions in vegetated aquatic systems. In ‘Habitat Complexity: the Physical Arrangement of Objects in Space’. (Eds S. S. Bell, E. D. McCoy and H. R. Mushinsky.) pp. 281–289. (Chapman and Hall: New York.)

Helenius, L. K., Borg, J. P. G., Nurminen, L., Leskinen, E., and Lehtonen, H. (2013). The effects of turbidity on prey consumption and selection of zooplanktivorous Gasterosteus aculeatus L. Aquatic Ecology 47, 349–356.
CrossRef |

Higuti, J., Velho, L. F. M., Lansac-Tôha, F. A., and Martens, K. (2007). Pleuston communities are buffered from regional flood pulses: the example of ostracods in the Paraná River floodplain, Brazil. Freshwater Biology 52, 1930–1943.
CrossRef |

Ivlev, V. S. (1961). ‘Experimental Ecology of Feeding Fishes.’ (Yale University Press: New Haven, CT.)

Jacobsen, L., Berg, S., and Jepsen, N. (2004). Does roach behavior differ between shallow lakes of different environmental state? Journal of Fish Biology 65, 135–147.
CrossRef |

Johansson, F. (1993). Effects of prey type, prey density and predator presence on behaviour and predation risk in a larval damselfly. Oikos 68, 481–489.
CrossRef |

Jönsson, M., Hylander, S., Ranåker, L., Nilsson, P. A., and Brönmark, C. (2011). Foraging success of juvenile pike Esox lucius depends on visual conditions and prey pigmentation. Journal of Fish Biology 79, 290–297.
CrossRef | PubMed |

Krebs, C. J. (1989). ‘Ecological Methodology.’ (Harper Collins Publishers: New York.)

Lehtiniemi, M., Engström-Öst, J., and Viitasalo, M. (2005). Turbidity decreases anti-predator behaviour in pike larvae, Esox lucius. Environmental Biology of Fishes 73, 1–8.
CrossRef |

Loverde-Oliveira, S. M., Huszar, V. L. M., Mazzeo, N., and Scheffer, M. (2009). Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems 12, 807–819.
CrossRef |

Luiz, E. A., Agostinho, A. A., Gomes, L. C., and Hahn, N. S. (1998). Ecologia trófica de peixes em dois riachos da bacia do rio Paraná. Revista Brasileira de Biologia 58, 273–285.

MacArthur, R. H., and Pianka, E. R. (1966). On optimal use of a patchy environment. American Naturalist 100, 603–609.
CrossRef |

Malabarba, L. R. (1998). Monophyly of the Cheirodontinae, characters and major clades (Ostariophysi: Characidae). In ‘Phylogeny and Classification of Neotropical Fishes’. (Eds L. R. Malabarba, R. E. Reis, R. P. Vari, Z. M. S. Lucena and C. A. S. Lucena.) pp. 193–233. (EDIPUCRS: Porto Alegre, Brazil.)

Matthews, W. J. (1998). ‘Patterns in Freshwater Fish Ecology.’ (Chapman and Hall: New York.)

Miranda, L. E. (2011). Depth as an organizer of fish assemblages in floodplain lakes. Aquatic Sciences 73, 211–221.
CrossRef | CAS |

Mormul, R. P., Vieira, L. A., Júnior, S. P., Monkolski, A., and dos Santos, A. M. (2006). Sucessão de invertebrados durante o processo de decomposição de duas plantas aquáticas (Eichhornia azurea e Polygonum ferrugineum). Acta Scientiarum, Biological Sciences 28, 109–115.

Mormul, R. P., Thomaz, S. M., Agostinho, A. A., Bonecker, C. C., and Mazzeo, N. (2012). Migratory benthic fishes may induce regime shifts in a tropical floodplain pond. Freshwater Biology 57, 1592–1602.
CrossRef |

Oliveira, E. F., Goulart, E., Breda, L., Minte-Vera, C. V., Paiva, L. R. S., and Vismara, M. R. (2010). Ecomorphological patterns of the fish assemblage in a tropical floodplain: effects of trophic, spatial and phylogenetic structures. Neotropical Ichthyology 8, 569–586.

Padial, A. A., and Thomaz, S. M. (2008). Prediction of the light attenuation coefφιcient through the Secchi disk depth: empirical modeling in two large Neotropical ecosystems. Limnology 9, 143–151.
CrossRef |

Padial, A. A., Thomaz, S. M., and Agostinho, A. A. (2009). Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctafilomena. Hydrobiologia 624, 161–170.
CrossRef |

Pedro, P., and Ramos, J. A. (2009). Diet and prey selection of shorebirds on salt pans in the Mondego estuary, western Portugal. Ardeola 56, 1–11.

Pelicice, F. M., and Agostinho, A. A. (2006). Feeding ecology of fishes associated with Egeria spp. patches in a tropical reservoir, Brazil. Ecology Freshwater Fish 15, 10–19.
CrossRef |

Persson, L. (1993). Predator-mediated competition in prey refuges: the importance of habitat dependent prey resources. Oikos 68, 12–22.
CrossRef |

Persson, L., and Eklöv, P. (1995). Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology 76, 70–81.
CrossRef |

Piana, P. A., Gomes, L. C., and Cortez, E. M. (2006). Factors influencing Serrapinnus notomelas (Characiformes, Characidae) populations in upper Paraná river floodplain lagoons. Neotropical Ichthyology 4, 81–86.
CrossRef |

Priyadarshana, T., Asaeda, T., and Manatunge, J. (2001). Foraging behaviour of planktivorous fish in artificial vegetation: the effects on swimming and feeding. Hydrobiologia 442, 231–239.
CrossRef |

Quinn, G. P., and Keough, M. J. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Cambridge, UK.)

Ranåker, L., Jönsson, M., Nilsson, P. A., and Brönmark, C. (2012). Effects of brown and turbid water on piscivore–prey fish interactions along a visibility gradient. Freshwater Biology 57, 1761–1768.
CrossRef |

Rocha, R. R. A., Thomaz, S. M., Carvalho, P., and Gomes, L. C. (2009). Modeling chlorophyll-a and dissolved oxygen concentration in tropical floodplain lakes (Paraná River, Brazil). Brazilian Journal of Biology 69, 491–500.
CrossRef | CAS |

Savino, J., and Stein, R. A. (1982). Predator–prey interaction between largemouth bass and bluegills as influenced by simulated, submerged vegetation. Transactions of the American Fisheries Society 111, 255–266.
CrossRef |

Scheinin, M., Scyphers, S. B., Kauppi, L., Heck, K. L., and Mattila, J. (2012). The relationship between vegetation density and its protective value depends on the densities and traits of prey and predators. Oikos 121, 1093–1102.
CrossRef |

Shoup, D. E., and Wahl, D. H. (2009). The effect of turbidity on prey selection by piscivorous largemouth bass. Transactions of the American Fisheries Society 138, 1018–1027.
CrossRef |

Skov, C., Berg, S., Jacobsen, L., and Jepsen, N. (2002). Habitat use and foraging success of 0+ pike (Esox lucius L.) in experimental ponds related to prey fish, water transparency and light intensity. Ecology Freshwater Fish 11, 65–73.
CrossRef |

Snickars, M., Sandtröm, A., and Mattila, J. (2004). Antipredator behaviour of 0+ year Perca fluviatilis: effect of vegetation density and turbidity. Journal of Fish Biology 65, 1604–1613.
CrossRef |

Sousa, W. T. Z., Thomaz, S. M., and Murphy, K. J. (2010). Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92, 40–48.
CrossRef |

Stansfield, J. H., Perrow, M. R., Tench, L. D., Jowitt, A. J. D., and Taylor, A. A. L. (1997). Submerged macrophytes as refuges for grazing Cladocera against fish predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342/343, 229–240.
CrossRef |

Statsoft Inc. (2005). STATISTICA (Data Analysis Software System) Version 7.1 for Windows: Statistics. (STATSOFT Inc.: Tulsa, OK.)

Stuart-Smith, R. D., Stuart-Smith, J. F., White, R. W. G., and Barmuta, L. A. (2007). The effects of turbidity and complex habitats on the feeding of a galaxiid fish are clear and simple. Marine and Freshwater Research 58, 429–435.
CrossRef |

Sweka, J. A., and Hartman, K. J. (2001). Effects of turbidity on prey consumption and growth in brook trout and implications for bioenergetics modeling. Canadian Journal of Fisheries and Aquatic Sciences 58, 386–393.
CrossRef |

Thomaz, S. M., Dibble, E. D., Evangelista, L. R., Higuti, J., and Bini, L. M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53, 358–367.

Turesson, H., and Brönmark, C. (2007). Predator–prey encounter rate in freshwater piscivores: effects of prey density and water transparency. Oecologia 153, 281–290.
CrossRef | PubMed |

Utne-Palm, A. C. (1999). The effect of prey mobility, prey contrast, turbidity and spectral composition on the reaction distance of Gobiusculus flavescens to its planktonic prey. Journal of Fish Biology 54, 1244–1258.
CrossRef |

Utne-Palm, A. C. (2002). Visual feeding of fish in a turbid environment: physical and behavioural aspects. Marine and Freshwater Behaviour and Physiology 35, 111–128.
CrossRef |

Webster, M. M., Atton, N., Ward, A. J. W., and Hart, P. J. B. (2007). Turbidity and foraging rate in threespine sticklebacks: the importance of visual and chemical prey cues. Behaviour 144, 1347–1360.
CrossRef |

Weibel, D., and Peter, A. (2013). Effectiveness of different types of block ramps for fish upstream movement. Aquatic Sciences 75, 251–260.
CrossRef |

Zar, J. H. (2010). ‘Biostatistical Analysis.’ (Pearson Prentice-Hall: Upper Saddle River, NJ, USA.)

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015