Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Do vertebral chemical signatures distinguish juvenile blacktip shark (Carcharhinus limbatus) nursery regions in the northern Gulf of Mexico?

Justin P. Lewis A B E , William F. Patterson III A B , John K. Carlson C and Katherine McLachlin D
+ Author Affiliations
- Author Affiliations

A University of South Alabama, Department of Marine Sciences, 307 North University Boulevard, Mobile, AL 366888, USA.

B Dauphin Island Sea Lab, 101 Bienville Boulevard, Dauphin Island, AL 36528, USA.

C National Marine Fisheries Service, Southeast Fisheries Science Center, Panama City Laboratory, 3500 Delwood Beach Road, Panama City, FL 32408, USA.

D Electro Scientific Industries, 685 Old Buffalo Trail, Bozeman, MT 59715, USA.

E Corresponding author. Present address: Center for Fisheries Research and Development, Gulf Coast Research Laboratory, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, USA. Email: jplewis86@gmail.com

Marine and Freshwater Research 67(7) 1014-1022 https://doi.org/10.1071/MF15088
Submitted: 1 March 2015  Accepted: 1 December 2015   Published: 11 February 2016

Journal Compilation © CSIRO Publishing 2016 Open Access CC BY-NC-ND

Abstract

Identifying and protecting shark nurseries is a common management strategy used to help rebuild overfished stocks, yet we know little about connectivity between juvenile and adult populations. By analysing trace metals incorporated into vertebral cartilage, it may be possible to infer natal origin based on nursery-specific chemical signatures. To assess the efficacy of this approach, we collected juvenile blacktip sharks (Carcharhinus limbatus; n = 93) from four regions in the Gulf of Mexico in 2012 and 2013 and analysed their vertebral centra with laser ablation–inductively coupled plasma–mass spectrometry. We observed significant regional differences in six element : Ca ratios in both 2012 and 2013. Multi-element chemical signatures were significantly different among regions and between year-classes. Year-class-specific linear discriminant function analysis yielded regional classification accuracies of 81% for 2012 and 85% for 2013, although samples were not obtained from all four regions in 2012. Combining year-classes resulted in an overall classification accuracy of 84%, thus demonstrating the usefulness of this approach. These results are encouraging yet highlight a need for more research to better evaluate the efficacy of vertebral chemistry to study elasmobranch population connectivity.

Additional keywords: laser ablation, natal origin, shark nurseries, vertebral chemistry.


References

Aschner, J. L., and Aschner, M. (2005). Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine 26, 353–362.
Nutritional aspects of manganese homeostasis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXpslygur4%3D&md5=4521afab529a4f1eab4484940abbd8ddCAS | 16099026PubMed |

Ashhurst, D. E. (2004). The cartilaginous skeleton of an elasmobranch fish does not heal. Matrix Biology 23, 15–22.
The cartilaginous skeleton of an elasmobranch fish does not heal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXksVaku7g%3D&md5=81780c40e8be44b21d9b0c0f92de2dffCAS | 15172034PubMed |

Baremore, I. E., and Passerotti, M. S. (2013). Reproduction of the blacktip shark in the Gulf of Mexico. Marine and Coastal Fisheries 5, 127–138.
Reproduction of the blacktip shark in the Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M., Halpern, B., Hays, C. G., Hoshino, K., Minello, T. J., Orth, R. J., Sheridan, P. F., and Weinstein, M. P. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641.
The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates.Crossref | GoogleScholarGoogle Scholar |

Campana, S. E. (1999). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188, 263–297.
Chemistry and composition of fish otoliths: pathways, mechanisms and applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFKmtA%3D%3D&md5=1c1a0b19f44f50ec78fd6669fd952b22CAS |

Campana, S. E., Natanson, L. J., and Myklevoll, S. (2002). Bomb dating and age determination of large pelagic sharks. Canadian Journal of Fisheries and Aquatic Sciences 59, 450–455.
Bomb dating and age determination of large pelagic sharks.Crossref | GoogleScholarGoogle Scholar |

Carlson, J. K., Sulikowski, J. R., and Baremore, I. E. (2006). Do differences in life history traits exist for blacktip sharks, Carcharhinus limbatus, from the United States South Atlantic Bight and Eastern Gulf of Mexico? Environmental Biology of Fishes 77, 279–292.
Do differences in life history traits exist for blacktip sharks, Carcharhinus limbatus, from the United States South Atlantic Bight and Eastern Gulf of Mexico?Crossref | GoogleScholarGoogle Scholar |

Cook, G. S. (2011). Changes in otolith microchemistry over a protracted spawning season influence assignment of natal origin. Marine Ecology Progress Series 423, 197–209.
Changes in otolith microchemistry over a protracted spawning season influence assignment of natal origin.Crossref | GoogleScholarGoogle Scholar |

Duncan, K. M., and Holland, K. N. (2006). Habitat use, growth rates and dispersal patterns of juvenile scalloped hammerhead sharks Sphyrna lewini in a nursery habitat. Marine Ecology Progress Series 312, 211–221.
Habitat use, growth rates and dispersal patterns of juvenile scalloped hammerhead sharks Sphyrna lewini in a nursery habitat.Crossref | GoogleScholarGoogle Scholar |

Elsdon, T. S., and Gillanders, B. M. (2005). Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency. Canadian Journal of Fisheries and Aquatic Sciences 62, 1143–1152.
Alternative life-history patterns of estuarine fish: barium in otoliths elucidates freshwater residency.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXoslGqs7o%3D&md5=820f1beaf2a24658afa7e44f788b4d6fCAS |

Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., Secor, D. H., Thorrold, S. R., and Walther, B. D. (2008). Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanography and Marine Biology – an Annual Review 46, 297–330.
Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences.Crossref | GoogleScholarGoogle Scholar |

Estrada, J. A., Rice, A. N., Natanson, L. J., and Skomal, G. B. (2006). Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87, 829–834.
Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks.Crossref | GoogleScholarGoogle Scholar | 16676526PubMed |

Fenton, G. E. (2001). Radiometric Ageing of Sharks. FRDC Final Report 1994/021. Fisheries Research and Development Corporation, Canberra, Australia.

Hamer, P. A., Jenkins, G. P., and Gillanders, B. M. (2003). Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation. Marine Ecology Progress Series 263, 261–273.
Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitVaru7o%3D&md5=c96b8b10981f2a27ec74b8e404a3e411CAS |

Hanson, P. J., Koenig, C. C., and Zdanowicz, V. S. (2004). Elemental composition of otoliths used to trace estuarine habitats of juvenile gag Mycteroperca microlepis along the west coast of Florida. Marine Ecology Progress Series 267, 253–265.
Elemental composition of otoliths used to trace estuarine habitats of juvenile gag Mycteroperca microlepis along the west coast of Florida.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt1KktLw%3D&md5=0b8fccf006ceb320d20621202372e0e4CAS |

Heupel, M. R., and Simpfendorfer, C. A. (2002). Estimation of mortality of juvenile blacktip sharks, Carcharhinus limbatus, within a nursery area using telemetry data. Canadian Journal of Fisheries and Aquatic Sciences 59, 624–632.
Estimation of mortality of juvenile blacktip sharks, Carcharhinus limbatus, within a nursery area using telemetry data.Crossref | GoogleScholarGoogle Scholar |

Heupel, M. R., Simpfendorfer, C. A., and Hueter, R. E. (2004). Estimation of shark home ranges using passive monitoring techniques. Environmental Biology of Fishes 71, 135–142.
Estimation of shark home ranges using passive monitoring techniques.Crossref | GoogleScholarGoogle Scholar |

Heupel, M. R., Carlson, J. K., and Simpfendorfer, C. A. (2007). Shark nursery areas: concepts, definition, characterization and assumptions. Marine Ecology Progress Series 337, 287–297.
Shark nursery areas: concepts, definition, characterization and assumptions.Crossref | GoogleScholarGoogle Scholar |

Hueter, R. E., and Tyminski, J. P. (2007). Species-specific distribution and habitat characteristics of shark nurseries in Gulf of Mexico waters off peninsular Florida and Texas. American Fisheries Society Symposium 50, 193–223.

Hueter, R. E., Heupel, M. R., Heist, E. J., and Keeney, D. B. (2005). Evidence of philopatry in sharks and implications for the management of shark fisheries. Journal of Northwest Atlantic Fishery Science 35, 239–247.
Evidence of philopatry in sharks and implications for the management of shark fisheries.Crossref | GoogleScholarGoogle Scholar |

Hussey, N. E., Wintner, S. P., Dudley, S. F., Cliff, G., Cocks, D. T., and Aaron MacNeil, M. (2010). Maternal investment and size‐specific reproductive output in carcharhinid sharks. Journal of Animal Ecology 79, 184–193.
Maternal investment and size‐specific reproductive output in carcharhinid sharks.Crossref | GoogleScholarGoogle Scholar | 19845812PubMed |

Izzo, C., Doubleday, Z. A., Schultz, A. G., Woodcock, S. H., and Gillanders, B. M. (2015). Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments. Journal of Fish Biology 86, 1680–1698.
Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2Mfps1ensg%3D%3D&md5=2e54b18c3611aa2782c2759c17614afbCAS | 26033292PubMed |

Izzo, C., Doubleday, Z. A., and Gillanders, B. M. (2016). Where do elements bind within the otoliths of fish? Marine and Freshwater Research 67, 1072–1076.
Where do elements bind within the otoliths of fish?Crossref | GoogleScholarGoogle Scholar |

Kalfas, I. H. (2001). Principles of bone healing. Neurosurgical Focus 10, 1–4.
Principles of bone healing.Crossref | GoogleScholarGoogle Scholar |

Keeney, D. B., Heupel, M. R., Hueter, R. E., and Heist, E. J. (2005). Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea. Molecular Ecology 14, 1911–1923.
Microsatellite and mitochondrial DNA analyses of the genetic structure of blacktip shark (Carcharhinus limbatus) nurseries in the northwestern Atlantic, Gulf of Mexico, and Caribbean Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlslemsb8%3D&md5=af7262c3d63fac51cc2351e5004f736eCAS | 15910315PubMed |

Kinney, M. J., and Simpfendorfer, C. A. (2009). Reassessing the value of nursery areas to shark conservation and management. Conservation Letters 2, 53–60.
Reassessing the value of nursery areas to shark conservation and management.Crossref | GoogleScholarGoogle Scholar |

Knip, D. M., Heupel, M. R., Simpfendorfer, C. A., Tobin, A. J., and Moloney, J. (2011). Wet-season effects on the distribution of juvenile pigeye sharks, Carcharhinus amboinensis, in tropical nearshore waters. Marine and Freshwater Research 62, 658–667.
Wet-season effects on the distribution of juvenile pigeye sharks, Carcharhinus amboinensis, in tropical nearshore waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXnvFanu7k%3D&md5=cea979b6a3f17b7d775bb2c5e84ae12bCAS |

Kohler, N. E., and Turner, P. A. (2001). Shark tagging: a review of conventional methods and studies. Environmental Biology of Fishes 60, 191–224.
Shark tagging: a review of conventional methods and studies.Crossref | GoogleScholarGoogle Scholar |

Kraus, R. T., and Secor, D. H. (2004). Incorporation of strontium into otoliths of an estuarine fish. Journal of Experimental Marine Biology and Ecology 302, 85–106.
Incorporation of strontium into otoliths of an estuarine fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjtVWntbw%3D&md5=7b1b04bb9895fb8a9bab2affe063f61aCAS |

Limburg, K. E. (1995). Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima. Marine Ecology Progress Series 119, 25–35.
Otolith strontium traces environmental history of subyearling American shad Alosa sapidissima.Crossref | GoogleScholarGoogle Scholar |

Macdonald, J. I., and Crook, D. A. (2010). Variability in Sr : Ca and Ba : Ca ratios in water and fish otoliths across an estuarine salinity gradient. Marine Ecology Progress Series 413, 147–161.
Variability in Sr : Ca and Ba : Ca ratios in water and fish otoliths across an estuarine salinity gradient.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht12msLzM&md5=cfd9e1f60ad5bf19da6bcb38eba76372CAS |

Madejczyk, M. S., Boyer, J. L., and Ballatori, N. (2009). Hepatic uptake and biliary excretion of manganese in the little skate, Leucoraja erinacea. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology 149, 566–571.
Hepatic uptake and biliary excretion of manganese in the little skate, Leucoraja erinacea.Crossref | GoogleScholarGoogle Scholar |

Mathews, T., and Fisher, N. S. (2009). Dominance of dietary intake of metals in marine elasmobranch and teleost fish. The Science of the Total Environment 407, 5156–5161.
Dominance of dietary intake of metals in marine elasmobranch and teleost fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptVSjtLs%3D&md5=61c87409bb2023bf88eadaf796885cdfCAS | 19580992PubMed |

Miller, M. B., Clough, A. M., Batson, J. N., and Vachet, R. W. (2006). Transition metal binding to cod otolith proteins. Journal of Experimental Marine Biology and Ecology 329, 135–143.
Transition metal binding to cod otolith proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVKlsw%3D%3D&md5=6016d2fabe754800e5d5c24527808f4aCAS |

Officer, R. A., Clement, J. G., and Rowler, D. K. (1995). Vertebral deformities in a school shark, Galeorhinus galeus: circumstantial evidence for endoskeletal resorption? Journal of Fish Biology 46, 85–98.
Vertebral deformities in a school shark, Galeorhinus galeus: circumstantial evidence for endoskeletal resorption?Crossref | GoogleScholarGoogle Scholar |

Olin, J. A., Hussey, N. E., Fritts, M., Heupel, M. R., Simpfendorfer, C. A., Poulakis, G. R., and Frisk, A. T. (2011). Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young animals. Rapid Communications in Mass Spectrometry 25, 1008–1016.
Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXktFWqsb0%3D&md5=f60f30de2db571fb8b6d408985916944CAS | 21452377PubMed |

Parsons, G. R., and Hoffmayer, E. R. (2007). Identification and characterization of shark nursery grounds along the Mississippi and Alabama gulf coasts. American Fisheries Society Symposium 50, 301–316.

Passerotti, M. S., Carlson, J. K., Piercy, A. N., and Campana, S. E. (2010). Age validation of great hammerhead shark (Sphyrna mokarran), determined by bomb radiocarbon analysis. Fishery Bulletin 108, 346–351.

Passerotti, M. S., Andrews, A. H., Carlson, J. K., Winter, S. P., Goldman, K. J., and Natanson, L. J. (2014). Maximum age and missing time in the vertebrae of sand tiger shark (Carcharias taurus): validated lifespan from bomb radiocarbon dating in the western North Atlantic and southwestern Indian Oceans. Marine and Freshwater Research 65, 674–687.
Maximum age and missing time in the vertebrae of sand tiger shark (Carcharias taurus): validated lifespan from bomb radiocarbon dating in the western North Atlantic and southwestern Indian Oceans.Crossref | GoogleScholarGoogle Scholar |

Pitts, L. C., and Wallace, G. T. (1994). Lead deposition in the shell of the bivalve, Mya arenaria: an indicator of dissolved lead in seawater. Estuarine, Coastal and Shelf Science 39, 93–104.
Lead deposition in the shell of the bivalve, Mya arenaria: an indicator of dissolved lead in seawater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXhvVWitrY%3D&md5=2f1ea8bd319494591dee886b017544e6CAS |

Scharer, R. M., Patterson, W. F., Carlson, J. K., and Poulakis, G. R. (2012). Age and growth of endangered smalltooth sawfish (Pristis pectinata) verified with LA-ICP-MS analysis of vertebrae. PLoS One 7, e47850.
Age and growth of endangered smalltooth sawfish (Pristis pectinata) verified with LA-ICP-MS analysis of vertebrae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1ansbvK&md5=deaf71fe42eb4eaf488b7eadbe9de876CAS | 23082225PubMed |

Sluis, M. Z., Barnett, B. K., Patterson, W. F., Cowan, J. H., and Shiller, A. M. (2012). Discrimination of juvenile red snapper otolith chemical signatures from Gulf of Mexico nursery regions. Marine and Coastal Fisheries 4, 587–598.
Discrimination of juvenile red snapper otolith chemical signatures from Gulf of Mexico nursery regions.Crossref | GoogleScholarGoogle Scholar |

Smith, W. D. (2013). Vertebral elemental markers in elasmobranchs: potential for reconstructing environmental history and population structure. Ph.D. Thesis, Oregon State University, Corvallis.

Smith, W. D., Miller, J. A., and Heppell, S. S. (2013). Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry. PLoS One 8, e62423.
Elemental markers in elasmobranchs: effects of environmental history and growth on vertebral chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOrt77I&md5=be20988421835f7224f1041e40d81216CAS | 24098320PubMed |

Southeast Data, Assessment, and Review (2012). Stock Assessment Report of SEDAR 29, HMS Gulf of Mexico Blacktip Shark. (Southeast Fisheries Science Center: Charleston, SC.) Available at http://sedarweb.org/docs/sar/S29_GOM%20blacktip%20report_SAR_final.pdf [Verified 8 November 2015].

Steiner, P. A., Michel, M., and O’Donnell, P. M. (2007). Notes on the occurrence and distribution of elasmobranchs in the Ten Thousand Islands Estuary, Florida. American Fisheries Society Symposium 50, 237–250.

Sturrock, A. M., Trueman, C. N., Darnaude, A. M., and Hunter, E. (2012). Can otolith elemental chemistry retrospectively track migrations in fully marine fishes? Journal of Fish Biology 81, 766–795.
Can otolith elemental chemistry retrospectively track migrations in fully marine fishes?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhtl2ltLvN&md5=9546ccc49c9558b3fe7de3bf4a0f68efCAS | 22803735PubMed |

Tillett, B. J., Meekan, M. G., Parry, D., Munksgaard, N., Field, I. C., Thorburn, D., and Bradshaw, C. J. (2011). Decoding fingerprints: elemental composition of vertebrae correlates to age-related habitat use in two morphologically similar sharks. Marine Ecology Progress Series 434, 133–142.
Decoding fingerprints: elemental composition of vertebrae correlates to age-related habitat use in two morphologically similar sharks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1GktrjJ&md5=e030bcd9c1c01c00ee47a5acc7a822e1CAS |

Vasconcelos, R. P., Reis-Santos, P., Costa, M. J., and Cabral, H. N. (2011). Connectivity between estuaries and marine environment: Integrating metrics to assess estuarine nursery function. Ecological Indicators 11, 1123–1133.
Connectivity between estuaries and marine environment: Integrating metrics to assess estuarine nursery function.Crossref | GoogleScholarGoogle Scholar |

Walther, B. D., and Thorrold, S. R. (2006). Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series 311, 125–130.
Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFaltrw%3D&md5=c081c33c5bf8c48f6356395d8f72c789CAS |

Webb, S. D., Woodcock, S. H., and Gillanders, B. M. (2012). Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature. Marine Ecology Progress Series 453, 189–199.
Sources of otolith barium and strontium in estuarine fish and the influence of salinity and temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVOmtrrN&md5=741e333ddffda2d19455d220ce8a3a4dCAS |

Welden, B. A., Cailliet, G. M., and Flegal, A. R. (1987). Comparison of radiometric with vertebral band age estimates in four California elasmobranchs. In ‘Age and Growth of fish’. (Eds R. C. Summerfelt and G. E. Hall.) pp. 301–315. (Iowa State University Press: Ames, IA.)

Wells, B. K., Bath, G. E., Thorrold, S. R., and Jones, C. M. (2000). Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry. Canadian Journal of Fisheries and Aquatic Sciences 57, 2122–2129.
Incorporation of strontium, cadmium, and barium in juvenile spot (Leiostomus xanthurus) scales reflects water chemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjsFGmuw%3D%3D&md5=5fda68451216b225274edecb5bcf7954CAS |

Wells, B. K., Rieman, B. E., Clayton, J. L., Horan, D. L., and Jones, C. M. (2003). Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater. Transactions of the American Fisheries Society 132, 409–424.
Relationships between water, otolith, and scale chemistries of westslope cutthroat trout from the Coeur d’Alene River, Idaho: the potential application of hard-part chemistry to describe movements in freshwater.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksVGktLk%3D&md5=e00656f5247624767b1651d8c0805c9fCAS |

Yeiser, B. G., Heupel, M. R., and Simpfendorfer, C. A. (2008). Occurrence, home range and movement patterns of juvenile bull (Carcharhinus leucas) and lemon (Negaprion brevirostris) sharks within a Florida estuary. Marine and Freshwater Research 59, 489–501.
Occurrence, home range and movement patterns of juvenile bull (Carcharhinus leucas) and lemon (Negaprion brevirostris) sharks within a Florida estuary.Crossref | GoogleScholarGoogle Scholar |