CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn


Article << Previous     |     Next >>   Contents Vol 31(3)

Spectral adsorption properties of natural watres: contribtion of the soluble and particulate fractions to light absorption in some inland watres of south-eastern Australia

JTO Kirk

Australian Journal of Marine and Freshwater Research 31(3) 287 - 296
Published: 1980


A method has been developed for measuring the absorption spectra, and calculating the in situ absorption coefficients, of the particulate fraction (tripton/phytoplankton) of natural waters. The procedure involves concentrating the particulate fraction by filtration followed by resuspension in a smaller volume, and measuring the absorption spectrum with the help of an integrating sphere to minimize the effects of light scattering. The method has been applied to seven inland water bodies in the southern tablelands of New South Wales and the Australian Capital Territory. For comparative purposes the absorption spectra. and in situ absorption coefficients, of the soluble colouring matter (gilvin, gelbstoff) have also been measured. The absorption coefficients have been used to calculate what part of the total absorbed photosynthetically active radiation (PAR) is captured by each of the three major absorbing components. In clear but rather coloured waters, gilvin absorbs most of the quanta, followed by water itself. In two waters with fairly high phytoplankton levels, the particulate fraction absorbs as much PAR as the water, but gilvin still absorbs rather more than either. In highly turbid waters, the particulate fraction (consisting mainly of tripton) absorbs most of the quanta. The data show that tripton has an absorption spectrum in the visible region. which rises steadily with decreasing wavelength: this is attributed to humic materials. It is clear that in turbid waters the inanimate particulate fraction (tripton) is a major light absorber, in addition to being the most important light scatterer.

Full text doi:10.1071/MF9800287

© CSIRO 1980

blank image
Subscriber Login

PDF (526 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015