CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Sample Issue
For Authors
General Information
Instructions to Authors
Submit Article
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube


Article << Previous     |     Next >>   Contents Vol 34(1)

Upwelling by internal tides and kelvin waves at the continental shelf break on the Great Barrier Reef

E Wolanski and GL Pickard

Australian Journal of Marine and Freshwater Research 34(1) 65 - 80
Published: 1983


A time series of 50 days duration was obtained of sea levels and winds and of temperature and currents at six depths from 27 to 104 m at 18º19'S.,147º21'E. on the continental shelf break between the Great Barrier Reef and the Coral Sea. The sea-level signal had a predominantly mixed solar and lunar semidiurnal tidal period. The currents consisted of a semidiurnal tidal component oriented primarily cross-shelf, except near the sea floor, superimposed on a low-frequency, predominantly longshore, southward component, coherent with depth, in geostrophic balance, and modulated by the longshore wind component Large fluctuations in temperature were observed, consisting of a low-frequency component, possibly generated by internal Kelvin waves, and iiucruarions of predominantiy solar semidiurnai iidai period. The latter fiiictuations are interpreted as evidence of internal tides of amplitude up to 110 m that may be generated by the interaction of the longshore currents with topographic irregularities in the shelf. It is suggested that, during any long-term studies of water properties near the shelf break, some additional monitoring of short-term temporal variations should be carried out to avoid data aliasing by internal tides. The bottom boundary layer appears to be very active in vertical mixing. Internal tides may be very important in introducing other water components, e.g. nutrients, to the outer Great Barrier Reef.

Full text doi:10.1071/MF9830065

© CSIRO 1983

blank image
Subscriber Login

PDF (654 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014