CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Marine & Freshwater Research   
Marine & Freshwater Research
Journal Banner
  Advances in the Aquatic Sciences
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Virtual Issues
Sample Issue
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
For Referees
General Information
Review an Article
Referee Guidelines
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

 

Article << Previous     |     Next >>   Contents Vol 45(5)

Study of the ability of Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity: Implications for biomanipulation in Australia

V Matveev, L Matveeva and GJ Jones

Australian Journal of Marine and Freshwater Research 45(5) 889 - 904
Published: 1994

Abstract

The properties of Daphnia carinata King as a grazer for use in biomanipulation trials were investigated. Mesocosm experiments suggested that in water from a lake where D. carinata was scarce, phytoplankton was nutrient-limited and the manipulated biomass of zooplankton had no effect on total chlorophyll a, whereas in water from a lake where D. carinata was dominant, nutrients were not limiting and total chlorophyll a was negatively correlated with the manipulated biomass of zooplankton. When offered lake phytoplankton in feeding trials, D. carinata consumed all items present, including colonies of cyanobacteria and long filaments of diatoms. In large outdoor tanks with natural plankton, the biovolume of prokaryotic ultraplankton (possible predecessors of cyanobacterial blooms) was consistently reduced in the presence of D. carinata. There was no evidence of an adverse effect of single-celled Microcystis aeruginosa containing the peptide toxin microcystin-LR on D. carinata grazing rates or survival. Different concentrations of microcystin-LR in solution covering the range of toxicities observed during M. aeruginosa blooms (5-500 nM) had no effect on D. carinata grazing. The suppression of phytoplankton biomass by D. carinata grazing is one of several possible mechanisms that might be considered for biomanipulation in Australia.



Full text doi:10.1071/MF9940889

© CSIRO 1994

blank image
Subscriber Login
Username:
Password:  

 
PDF (822 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015