CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 29(4)

Limitations to leaf photosynthesis in field-grown grapevine under drought — metabolic and modelling approaches

João P. Maroco, M. Lucília Rodrigues, Carlos Lopes and M. Manuela Chaves

Functional Plant Biology 29(4) 451 - 459
Published: 19 April 2002


The effects of a slowly-imposed drought stress on gas-exchange, chlorophyll a fluorescence, biochemical and physiological parameters of Vitis vinifera L. leaves (cv. Aragonez, syn. Tempranillo) growing in a commercial vineyard (South Portugal) were evaluated. Relative to well-watered plants (predawn water potential, ΨPD = –0.13 ± 0.01 MPa), drought-stressed plants (ΨPD = –0.97 ± 0.01 MPa) had lower photosynthetic rates (ca 70%), stomatal conductance, and PSII activity (associated with a higher reduction of the quinone A pool and lower efficiency of PSII open centres). Stomatal limitation to photosynthesis was increased in drought-stressed plants relative to well-watered plants by ca 44%. Modelled responses of net photosynthesis to internal CO2 indicated that drought-stressed plants had significant reductions in maximum Rubisco carboxylation activity (ca 32%), ribulose-1,5-bisphosphate regeneration (ca 27%), and triose phosphate (triose-P) utilization rates (ca 37%) relative to well-watered plants. There was good agreement between the effects of drought on modelled biochemical parameters, and in vitro activities of key enzymes of carbon metabolism, namely Rubisco, glyceraldehyde-3-phosphate dehydrogenase, ribulose-5-phosphate kinase and fructose-1,6-bisphosphate phosphatase. Quantum yields measured under both ambient (35 Pa) and saturating CO2 (100 Pa) for drought-stressed plants were decreased relative to well-watered plants, as well as maximum photosynthetic rates measured at light and CO2 saturating conditions (three times ambient CO2 levels). Although stomatal closure was a strong limitation to CO2 assimilation under drought, comparable reductions in electron transport, CO2 carboxylation, and utilization of triose-P capacities were also adaptations of the photosynthetic machinery to dehydration that slowly developed under field conditions. Results presented in this study confirm that modelling photosynthetic responses based on gas-exchange data can be successfully used to predict metabolic limitations to photosynthesis.

Keywords: drought, enzymes of carbon metabolism, gas-exchange, modelling, photosynthesis,Vitis vinifera.

Full text doi:10.1071/PP01040

© CSIRO 2002

blank image
Subscriber Login

PDF (200 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015