CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 25(5)

Fluxes of carbon dioxide and water vapour over a C4 pasture in southwestern Amazonia (Brazil)

John Grace, Jon Lloyd, Antonio Carlos Miranda, Heloisa Miranda and J.H.C. Gash

Australian Journal of Plant Physiology 25(5) 519 - 530
Published: 1998


In Brazil, pastures for cattle ranching are being established in areas that were previously forested. To investigate some consequences of this change in land use we measured fluxes of CO2 and water vapour over a typical pasture, dominated by the introduced C4 grass Brachiaria brizantha. In addition, we compared the CO2, water vapour fluxes and canopy stomatal conductances observed with those obtained simultaneously over a nearby undisturbed rain forest. Measurements were made near the end of the wet season under conditions of ample soil moisture. Leaf area index of the pasture was 3.9.

The pasture had a lower canopy stomatal conductance than the forest (typically 0.2–0.3 mol m-2 s-1 versus 0.4–0.9 mol m-2 s-1 at high photon irradiance) and was less responsive to the canopy-to-air vapour pressure difference. As a consequence of these lower canopy stomatal conductances, the pasture used much less water than the forest with average values over the period examined being 153 mol H2O m-2 d-1 and 249 mol H2O m-2 d-1 for pasture and forest respectively (2.74 and 4.48 mm d-1 respectively). This was also reflected by differing fractions of the absorbed energy being dissipated as evaporation. This proportion was typically 0.56 for the pasture and 0.74 for the forest.

After allowing for soil and plant respiration, average daily photosynthetic rates were 0.67 mol C m-2 d-1 for the pasture and 0.57 mol C m-2 d-1for the forest (8.0 and 6.8 g C m-2 d-1, respectively). Thus, despite an appreciably lower rate of water use the pasture assimilated more carbon on a daily basis. Nevertheless, Brachiaria displayed a somewhat lower rate of photosynthesis than expected for a C4 grass, perhaps because of a low nutrient status. Indeed, at low and medium photon irradiance the pasture and forest showed remarkably similar photosynthetic performance. There was, however, less tendency for CO2 assimilation rates of the pasture canopy to saturate at high photon irradiance. The respiratory fluxes from the two ecosystems at night were quite similar, 6–8 µmol m-2 s-1.

The ratio of intercellular CO2 concentration to ambient CO2 concentration was usually 0.4 to 0.6 for the pasture, a range which is higher than that often reported for C4 plants but possibly not unusual for tropical grasses in their natural environment.

Full text doi:10.1071/PP97120

© CSIRO 1998

blank image
Subscriber Login

PDF (495 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016