CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 4(1)

Growth Pattern, Carbon Dioxide Exchange and Dry Weight Distribution in Wheat Growing Under Differing Photosynthetic Environments

RM Gifford

Australian Journal of Plant Physiology 4(1) 99 - 110
Published: 1977

Abstract

Wheat (cv. WW15) was grown as a crop stand in different CO2 concentrations (ambient, ambient plus 200 ± 20 vpm CO2, ambient minus 150 ± 20 vpm CO2) from germination to maturity in naturally lit growth cabinets under winter or summer light conditions, at 21°C by day and 16°C at night. Ambient CO2 concentration during the daylight hours averaged 280-300 vpm. CO2 level had little effect on phenology of the mainshoot; most of the growth response was through tillering. From data on flag leaves in the winter light experiment, there was no indication of any positive or negative feedback on growth acting through maximum leaf net photosynthesis rate. Leaf area index was increased by CO2 at low light and the related self-shading acted as a negative feedback partially countering the effect due to an enhanced rate of CO2 uptake per unit leaf area. Dark respiratory CO2 loss represented a greater proportion of CO2 uptake in the light for the CO2-depleted crop than for the control crop. But the reciprocal effect was not evident for the enriched crop. Contrary to classical ideas on growth responses to variation of colimiting factors, the growth response to CO2 enrichment was relatively greater under the low radiation than the high radiation regime. The grain was the tissue most flexible in its responsiveness to changes in assimilation under the conditions of the summer experiment. For this crop, for which the grain yield of the control was very high (0.97 kgm-2), response of yield to CO2 enrichment corresponded to 0.25% per vpm.



Full text doi:10.1071/PP9770099

© CSIRO 1977

blank image
Subscriber Login
Username:
Password:  

 
PDF (587 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014