CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Scope
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |         Contents Vol 7(2)

Adaptation to Water Stress of the Leaf Water Relations of Four Tropical Forage Species

JR Wilson, MM Ludlow, MJ Fisher and E Schulze

Australian Journal of Plant Physiology 7(2) 207 - 220
Published: 1980

Abstract

Three tropical grasses, green panic (Panicum maximum var, trichoglume), spear grass (Heteropogon contortus) and buffel grass (Cenchrus ciliaris) and the tropical legume siratro (Macroptilium atropurpureum), were grown in plots in a semi-arid field environment. The water relations characteristics of leaves from plants subjected to a soil drying cycle were compared with those of unstressed leaves from plants in irrigated plots. Minimum water potentials attained in the stressed leaves were c. -44, - 38, - 33 and - 13 bar for the four species, respectively.

The grass leaves adjusted osmotically to water stress, apparently through accumulation of solutes, so that there was a decrease in osmotic potential at full turgor (Ψπ100) of 5.5, 3.9 and 7.1 bar, and in water potential at zero turgor (Ψ0) of 8.6, 6.5 and 8.6 bar for green panic, spear grass and buffel respectively. Water stress appeared to increase slightly the proportion of bound water (B) and the bulk modulus of elasticity (ε) of the grass leaves, but it did not alter the relative water content at zero turgor (RWC0) or the ratio of turgid water content to dry weight of the tissue.

The Ψπ100 and Ψ0 of stressed siratro leaves decreased by 2.5-4 bar and 3-5 bar respectively when subjected to soil drying cycles. These changes could be explained by the marked decrease in the ratio of turgid water content to dry weight of the leaf tissue rather than by accumulation of solutes. The values of RWC0 and ε for siratro leaves were not altered by stress but, in contrast to the grasses, B was apparently decreased although the data exhibited high variability.

Adjustments in Ψπ100 and Ψ0 of stressed leaves of buffel grass and siratro were largely lost within 10 days of rewatering.



Full text doi:10.1071/PP9800207

© CSIRO 1980

blank image
Subscriber Login
Username:
Password:  

 
PDF (700 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2016