CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 26(1)

Effect of elevated carbon dioxide concentration at night on the growth and gas exchange of selected C4 species

Lewis H. Ziska and James A. Bunce

Australian Journal of Plant Physiology 26(1) 71 - 77
Published: 1999


Biomass of certain C4 species is increased when plants are grown at elevated CO2 concentrations. Experiments using four C4 species (Amaranthus retroflexus L., Amaranthus hypochondriacus L., Sorghum bicolor (L.) Moench and Zea mays L.) exposed both day and night from sowing to carbon dioxide concentrations of 370 (ambient) or 700 µmol mol-1 (elevated) or to 370 µmol mol-1 during the day and 700 µmol mol-1 at night, determined whether any biomass increase at elevated CO2 concentrations was related to a reduction in the night-time rate of CO2 efflux at high night-time CO2 concentrations. Of the four species tested, only A. retroflexus significantly increased both CO2 assimilation (+13%) and plant biomass (+21%) at continuous elevated relative to continuous ambient concentrations of CO2. This increase was not associated with improvement in leaf water potential during dark or light periods. In contrast, high CO2 only during the night significantly reduced plant biomass compared to the 24 h ambient CO2 treatment for both A. retroflexus and Z. mays. This indicates that the observed increase in biomass at elevated CO2 for A. retroflexus was not caused by a reduction of carbon loss at night (i.e. increased carbon conservation), but rather a direct stimulation of daytime CO2 assimilation, independent of any improvement in leaf water potential.

Keywords: Climate change, carbon dioxide, C4 plants, Amaranthus retroflexus, respiration.

Full text doi:10.1071/PP98136

© CSIRO 1999

blank image
Subscriber Login

PDF (230 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015