CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Reviews
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
PrometheusWiki
Protocols in ecological and environmental plant physiology

 

Article << Previous     |     Next >>   Contents Vol 26(5)

Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines

J. M. Escalona, J. Flexas and H. Medrano

Australian Journal of Plant Physiology 26(5) 421 - 433
Published: 1999

Abstract

Long-term induced water stress in field-grown grapevine leads to a progressive decline of stomatal conductance, accompanied by a decrease in CO 2 assimilation (40%). The apparent quantum yield also decreases (59%), which may reflect a relative increase in alternative processes for electron consumption. There is also a shift to non-stomatal regulation, as judged from significant depletions (37%) in maximum photosynthesis rate at saturating CO 2 related to limited ribulose biphosphate (RuBP) regeneration, whereas small, non-significant effects are observed on carboxylation efficiency. A high correlation (87%) between photosynthesis and stomatal conductance is observed for all experimental data and declines in intercellular CO 2 concentration parallel reductions in stomatal conductance. The data show that field response of grapevines to increasing soil water deficit involves stomatal and non-stomatal effects but, due to gradually induced drought, regulation mechanisms able to adjust mesophyll capacity to the average CO 2 supply. The non-stomatal adjustment seems to be exerted mainly in metabolic pathways related with the RuBP regeneration. Contrasting characteristics were observed for both cultivars. Tempranillo exploited the non-stressful conditions successfully, whereas Manto Negro, responding to its reputation as more drought resistant, showed a higher intrinsic water use efficiency, particularly for low water availability. This advantage seems to be due to lower non-stomatal limitations.

Keywords: Vitis vinifera L., drought, photosynthesis, stomatal and non-stomatal limitations.



Full text doi:10.1071/PP99019

© CSIRO 1999

blank image >
 
PDF (1.3 MB) $25
 Corrigendum
 Export Citation
 Print
  
  
Subscriber Login
Username:
Password:  

    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014