CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 26(7)

The thylakoid membranes of cyanobacteria: structure, dynamics and function

Conrad W. Mullineaux

Australian Journal of Plant Physiology 26(7) 671 - 677
Published: 1999


In recent years there has been remarkable progress in determining the three-dimensional structures of photosynthetic complexes. A new challenge is emerging: can we understand the organisation and interaction of those complexes in the intact photosynthetic membrane? Intact membranes are complex, dynamic systems. If we are to understand the function of the intact membrane, we will need to understand the organisation of the complexes, how they can diffuse and interact in the membrane, how they are assembled, repaired and broken down, and how their function is regulated. Cyanobacteria have some crucial advantages as model systems. The complete sequencing of the Synechocystis 6803 genome, coupled with the ease of genetic manipulation of Synechocystis (and certain other cyanobacteria) have given us a unique tool for studying a photosynthetic organism. Furthermore, some cyanobacteria have a very simple, regular thylakoid membrane structure. The unique geometry of photosynthetic membranes of these cyanobacteria will greatly facilitate biophysical studies of membrane function. This review summarises recent progress in understanding the structure, function and dynamics of cyanobacterial thylakoid membranes, highlights the questions that remain to be answered and suggests some possible approaches towards solving those questions.

Full text doi:10.1071/PP99027

© CSIRO 1999

blank image
Subscriber Login

PDF (633 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015