CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 27(2)

Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide

Lewis H. Ziska and John R. Teasdale

Australian Journal of Plant Physiology 27(2) 159 - 166
Published: 2000


Although the response of crop plants to rising atmospheric carbon dioxide concentration ([CO2]) has been well characterized, little is known concerning the long-term growth and/or photosynthetic response of peren-nial weeds. The growth and photosynthetic characteristics of three cohorts of a perennial C3 weedy species, quack-grass (Elytrigia repens (L.) Nevski) were examined at ~380 µmol mol−1 (ambient) and 720 µmol mol−1 (elevated) [CO2] in temperature-controlled greenhouses during 1998 and early 1999. Different cohorts were used to assess the sensitivity of growth, photosynthesis and glyphosate tolerance to elevated [CO2] for different stages in the life cycle of quackgrass. For the ‘old’ cohort, planted on Day of Year (DOY) 187, elevated [CO2] resulted in a consistent stim-ulation of single leaf photosynthesis, vegetative and whole plant biomass relative to the ambient [CO2] condition over a 231-d period. Data from the ‘intermediate’ (DOY 268) and ‘young’ cohorts (DOY 350) indicated that the stimula-tion of biomass at the elevated [CO2] was time-dependent. To determine if the observed stimulation of growth at ele-vated [CO2] altered tolerance to chemical weed control, glyphosate [(N-phosphonomethyl)glycine] was applied to each cohort and each [CO2] treatment at rates of 0 (control) and 2.24 kg ai ha−1 (sprayed). Tolerance was determined by following the growth and slope of each cohort at the growth [CO2] treatment for a 28-d period following glyphosate application. For the young cohort, [CO2] had no affect on glyphosate tolerance; however, an application rate of 2.24 kg ai ha−1, reduced but did not eliminate growth for the intermediate and old cohorts grown at elevated [CO2]. The basis for increased glyphosate tolerance at elevated [CO2] for these cohorts was unclear, but was not related to plant size at the time of glyphosate application. Data from this experiment indicate that sustained stimula-tion of photosynthesis and growth in perennial weeds could occur as atmospheric [CO2] increases, with a reduction in chemical control effectiveness and potential increases in weed/crop competition.

Keywords: climate change, CO2 concentration, glyphosate, quackgrass, tolerance.

Full text doi:10.1071/PP99099

© CSIRO 2000

blank image
Subscriber Login

PDF (287 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016