CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 27(9)

Pathway and control of sucrose import into initiating cotton fibre cells

Yong-Ling Ruan, Danny J. Llewellyn and Robert T. Furbank

Australian Journal of Plant Physiology 27(9) 795 - 800
Published: 2000


This paper originates from a presentation at the International Conference on Assimilate Transport and Partitioning, Newcastle, NSW, August 1999

Our aim is to unravel the mechanisms controlling fibre cell initiation from the epidermis of cotton (Gossypium hirsutum L.) ovules. We compared the development of fibres and trichomes in wild type cotton and a fibreless seed (fls) mutant, and determined the cellular pathway of sucrose transport into fibre initials on the day of anthesis. Although fibre initiation is inhibited in the fls mutant, leading to the fibreless phenotype, trichome development in other parts of the plant is normal. Confocal imaging analysis revealed that the fluorescent molecule, 5(6)-carboxyfluorescein, which is transported symplastically, moved readily from the integument phloem into initiating fibres. Plasmolysis studies showed that the fibre initials and adjacent non-initiating ovule epidermal cells have similar osmotic potential. Immunolocalisation analysis showed the absence of sucrose transporter proteins in the initiating fibre, but their abundance in the transfer cell precursors at the innermost integument. These results (i) demonstrate that fibre cell initiation is controlled by unique mechanism(s) that differ from that for normal trichome development; (ii) show a symplastic pathway of sucrose import into initiating fibres and strengthen the current opinion that sucrose synthase is likely to be the key enzyme mobilising sucrose into initiating fibres; and (iii) suggest that the initial protrusion of the fibre cells above the ovule surface is largely achieved by increased cell wall extensibility rather than higher turgor as is commonly thought.

Full text doi:10.1071/PP99154

© CSIRO 2000

blank image
Subscriber Login

PDF (213 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016