CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 21(6)

The Effect of High Temperature on Starch Synthesis and the Activity of Starch Synthase

K Denyer, CM Hylton and AM Smith

Australian Journal of Plant Physiology 21(6) 783 - 789
Published: 1994


The decrease in yield which is observed when developing storage organs such as cereal grains or potato tubers are exposed to high temperatures is due to a lower final starch content. The rate of starch synthesis during the development of these storage organs at high temperature, is either reduced or fails to increase sufficiently to compensate for the shorter developmental period. This effect on the rate of starch synthesis does not seem to be due to a reduction in the supply of photosynthate. One of the enzymes in the pathway of starch synthesis, soluble starch synthase, is susceptible to heat inactivation at unusually low temperatures and may also have a low optimum temperature for maximum activity. In some storage organs, the maximum catalytic activity of soluble starch synthase is not very much greater than the rate of starch synthesis. A decrease in the activity of this enzyme is therefore, likely to affect the rate of starch synthesis. Thus, the effect of high temperature on the rate of starch synthesis may be due, at least in part, to the properties of this enzyme. This review discusses the unusual heat-sensitivity of starch synthase in the context ofthe effects of high temperature on starch synthesis in storage organs.

Full text doi:10.1071/PP9940783

© CSIRO 1994

blank image
Subscriber Login

PDF (393 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014