CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant Function & Evolutionary Biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Board
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 23(1)

The Influence of Nitrogen on the Elevated CO2 Response in Field-Grown Rice

LH Ziska, W Weerakoon, OS Namuco and R Pamplona

Australian Journal of Plant Physiology 23(1) 45 - 52
Published: 1996


Rice (Oryza sativa L. cv. IR72) was grown in the tropics at ambient (345 μL L-1) or twice ambient (elevated, 700 μL L-1) CO2, concentration at three levels of supplemental nitrogen (N) (no additional N (N0), 90 kg ha-1 (N1) and 200 kg ha-1 (N2)) in open-top chambers under irrigated field conditions from seeding until flowering. The primary objective of the study was to determine if N supply alters the sensitivity of growth and photosynthesis of field-grown rice to enriched CO2. A second objective was to determine the influence of elevated CO2 on N uptake and tissue concentrations. Although photosynthesis was initially stimulated at the leaf and canopy level with elevated CO2 regardless of supplemental N supply, with time the photosynthetic response became highly dependent on the level of supplemental N, increasing proportionally as N availability increased. Similarly, a synergistic effect was noted between CO2 and N with respect to above-ground biomass with no effect of elevated CO2 observed for the No treatment. Most of the increase in above-ground biomass with increasing CO2 and N was associated with increased tiller and, to a lesser extent, root production. The concentration of above-ground N decreased at elevated CO2 regardless of N treatment; however, total above-ground N did not change for the N1 and N2 treatments because of the greater amount of biomass associated with elevated CO2. For rice, the photosynthetic and growth response to elevated CO2 may be highly dependent on the supply of N. If additional CO2 is given and N is not available, lack of sinks for excess carbon (e.g. tillers) may limit the photosynthetic and growth response.

Full text doi:10.1071/PP9960045

© CSIRO 1996

blank image
Subscriber Login

PDF (572 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2014