CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Functional Plant Biology   
Functional Plant Biology
Journal Banner
  Plant function and evolutionary biology
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Research Fronts
Evolutionary Reviews
Sample Issue
Call for Papers
For Authors
General Information
Submit Article
Author Instructions
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates
Library Recommendation

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn

red arrow PrometheusWiki
blank image
Protocols in ecological and environmental plant physiology


Article << Previous     |     Next >>   Contents Vol 23(5)

The Optimal Allocation of Nitrogen Within the C3 Photosynthetic System at Elevated CO2

BE Medlyn

Australian Journal of Plant Physiology 23(5) 593 - 603
Published: 1996


The distribution of nitrogen among compounds involved in photosynthesis varies in response to changes in environmental conditions such as photon flux density. However, the extent to which the nitrogen distribution within leaves adjusts in response to increased atmospheric CO2 is unclear.

A model was used to determine the nitrogen distribution which maximises photosynthesis under realistic light regimes at both current and elevated levels of CO2, and a comparison was made with observed leaf nitrogen distributions reported in the literature.

The model accurately predicted the distribution of nitrogen within the photosynthetic system for leaves grown at current levels of CO2, except at very high leaf nitrogen contents. The model predicted that, under a doubling of CO2 concentration from its current level, the ratio of electron transport capacity to Rubisco activity (Jmax : Vcmax) should increase by 40%. In contrast, measurements of Jmax : Vcmax taken from the literature show a slight but non-significant increase in response to an increase in CO2. The discrepancy between predicted and observed Jmax : Vcmax suggests that leaf nitrogen distribution does not acclimate optimally to elevated CO2. Alternatively, the discrepancy may be due to effects of CO2 which the model fails to take into account, such as a possible decrease in the conductance to CO2 transfer between the intercellular spaces and the sites of carboxylation at elevated CO2. Keywords: atmospheric CO2 concentration, leaf nitrogen, nitrogen partitioning, optirnisation, photosynthetically active radiation

Full text doi:10.1071/PP9960593

© CSIRO 1996

blank image
Subscriber Login

PDF (836 KB) $25
 Export Citation
Legal & Privacy | Contact Us | Help


© CSIRO 1996-2016